Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow

Authors

  • Amaka Patience Binitie Federal College of Education (Technical) Asaba
  • Christopher Chukwufunaya Odiakaose Dennis Osadebay University
  • Margaret Dumebi Okpor Delta State University of Science and Technology
  • Patrick Ogholuwarami Ejeh Dennis Osadebay University
  • Andrew Okonji Eboka Federal College of Education (Technical) Asaba
  • Arnold Adimabua Ojugo Federal University of Petroleum Resources
  • De Rosal Ignatius Moses Setiadi Dian Nuswantoro University
  • Rita Erhovwo Ako Federal University of Petroleum Resources
  • Tabitha Chukwudi Aghaunor Robert Morris University
  • Victor Ochuko Geteloma Federal University of Petroleum Resources
  • Anderson Afotanwo Federal Polytechnic Orogun

DOI:

https://doi.org/10.59247/jfsc.v2i3.267

Keywords:

Traffic Flow, Anomaly Detection, Machine Learning, XGBoost, Tree-based Algorithms

Abstract

The digital revolution births transformation in many facets of today’s society. Its adoption in transportation to curb traffic congestion in major cities globally advances smart-city initiatives. Challenges of population growth, lack of datasets, and aging infrastructure have necessitated the need for traffic analytics. Studies have estimated an associated global annual loss of $583 billion to traffic congestion for 2023. This, caused fuel wastage, loss of time, and increased costs across congested areas. With the cost of building more road networks, cities must advance new ways to improve traffic flow via anomaly detection as an early warning in the flow pattern. Our study posits stacked learning with extreme gradient boost as a meta-learner to help address imbalanced datasets, yield faster model construction, and ensure improved performance via enhanced anomalous data detection.

References

Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, and B. Y. Zhao, “‘How do urban incidents affect traffic speed?’ A Deep Graph Convolutional Network for Incident-driven Traffic Speed Prediction,” arXiv preprint arXiv:1912.01242, 2019, https://doi.org/10.1145/3340531.3411873.

R. R. Atuduhor et al., “StreamBoostE: A Hybrid Boosting-Collaborative Filter Scheme for Adaptive User-Item Recommender for Streaming Services,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 2, pp. 89–106, 2024, https://doi.org/10.22624/AIMS/V10N2P8.

F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A Review of Machine Learning and IoT in Smart Transportation,” Futur. Internet, vol. 11, no. 4, p. 94, 2019, https://doi.org/10.3390/fi11040094.

D. Wang, P. Wang, J. Zhou, L. Sun, B. Du, and Y. Fu, “Defending Water Treatment Networks: Exploiting Spatio-Temporal Effects for Cyber Attack Detection,” in 2020 IEEE International Conference on Data Mining (ICDM), pp. 32–41, 2020, https://doi.org/10.1109/ICDM50108.2020.00012.

D. A. Obasuyi et al., “NiCuSBlockIoT: Sensor-based Cargo Assets Management and Traceability Blockchain Support for Nigerian Custom Services,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 15, no. 2, pp. 45–64, 2024, https://doi.org/10.22624/AIMS/CISDI/V15N2P4.

S. E. Brizimor et al., “WiSeCart: Sensor-based Smart-Cart with Self-Payment Mode to Improve Shopping Experience and Inventory Management,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 1, pp. 53–74, 2024, https://doi.org/10.22624/AIMS/SIJ/V10N1P7.

A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 1–11, 2023, https://doi.org/10.33633/jcta.v1i2.9259.

A. A. Ojugo et al., “Evidence of Students’ Academic Performance at the Federal College of Education Asaba Nigeria: Mining Education Data,” Knowl. Eng. Data Sci., vol. 6, no. 2, pp. 145–156, 2023, https://doi.org/10.17977/um018v6i22023p145-156.

J. Dong et al., “Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China,” Agric. Water Manag., vol. 292, no. December 2023, p. 108665, 2024, https://doi.org/10.1016/j.agwat.2023.108665.

L. F. Rahman, M. Marufuzzaman, L. Alam, M. A. Bari, U. R. Sumaila, and L. M. Sidek, “Developing an ensembled machine learning prediction model for marine fish and aquaculture production,” Sustainability, vol. 13, no. 16, p. 9124, 2021, https://doi.org/10.3390/su13169124.

M. Zhong and R. Ding, “Design of a Personalized Recommendation System for Learning Resources based on Collaborative Filtering,” Int. J. Circuits, Syst. Signal Process., vol. 16, pp. 122–131, 2022, https://doi.org/10.46300/9106.2022.16.16.

A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 37–47, 2023, https://doi.org/10.33633/jcta.v1i2.9355.

Y. Lu, P. Kamranfar, D. Lattanzi, and A. Shehu, “Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel Attention-Based Spatio-Temporal Graph Convolutional Networks,” arXiv preprint arXiv:2110.01535, 2021, https://doi.org/10.48550/arXiv.2110.01535.

M. Y. Ansari, A. Ahmad, S. S. Khan, G. Bhushan, and Mainuddin, “Spatiotemporal clustering: a review,” Artif. Intell. Rev., vol. 53, no. 4, pp. 2381–2423, 2020, https://doi.org/10.1007/s10462-019-09736-1.

A. Hamdi, K. Shaban, A. Erradi, A. Mohamed, S. K. Rumi, and F. D. Salim, “Spatiotemporal data mining: a survey on challenges and open problems,” Artif. Intell. Rev., vol. 55, no. 2, pp. 1441–1488, 2022, https://doi.org/10.1007/s10462-021-09994-y.

K. Kalair and C. Connaughton, “Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship,” Transp. Res. Part C Emerg. Technol., vol. 127, p. 103178, 2021, https://doi.org/10.1016/j.trc.2021.103178.

E. U. Omede, A. E. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 273–283, 2024, https://doi.org/10.62411/jcta.9541.

[18] S. Qian et al., “Detecting Taxi Trajectory Anomaly Based on Spatio-Temporal Relations,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6883–6894, 2022, https://doi.org/10.1109/TITS.2021.3063199.

A. A. Ojugo and O. D. Otakore, “Computational solution of networks versus cluster grouping for social network contact recommender system,” Int. J. Informatics Commun. Technol., vol. 9, no. 3, p. 185, 2020, https://doi.org/10.11591/ijict.v9i3.pp185-194.

A. A. Ojugo, E. Ugboh, C. C. Onochie, A. O. Eboka, M. O. Yerokun, and I. J. Iyawa, “Effects of Formative Test and Attitudinal Types on Students’ Achievement in Mathematics in Nigeria,” African Educ. Res. J., vol. 1, no. 2, pp. 113–117, 2013, https://eric.ed.gov/?id=EJ1216962.

D. R. I. M. Setiadi, A. Susanto, K. Nugroho, A. R. Muslikh, A. A. Ojugo, and H. Gan, “Rice yield forecasting using hybrid quantum deep learning model,” MDPI Comput., vol. 13, no. 191, pp. 1–18, 2024, https://doi.org/10.3390/computers13080191.

Y. Hao, J. Li, N. Wang, X. Wang, and X. Gao, “Spatiotemporal consistency-enhanced network for video anomaly detection,” Pattern Recognit., vol. 121, p. 108232, 2022, https://doi.org/10.1016/j.patcog.2021.108232.

A. A. Ojugo and A. O. Eboka, “Modeling Behavioural Evolution as Social Predictor for the Coronavirus Contagion and Immunization in Nigeria,” J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 2, pp. 135–144, 2021, https://doi.org/10.35877/454RI.asci130.

B. O. Malasowe, M. I. Akazue, A. E. Okpako, F. O. Aghware, D. V. Ojie, and A. A. Ojugo, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023, https://doi.org/10.14569/IJACSA.2023.0140816.

D. A. Oyemade and A. A. Ojugo, “A property oriented pandemic surviving trading model,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 7397–7404, 2020, https://doi.org/10.30534/ijatcse/2020/71952020.

A. Boukerche and J. Wang, “Machine Learning-based traffic prediction models for Intelligent Transportation Systems,” Comput. Networks, vol. 181, p. 107530, 2020, https://doi.org/10.1016/j.comnet.2020.107530.

C. Xu and Y. Xie, “Conformal Anomaly Detection on Spatio-Temporal Observations with Missing Data,” arXiv preprint arXiv:2105.11886 , 2021, https://doi.org/10.48550/arXiv.2105.11886.

A. Emami, M. Sarvi, and S. A. Bagloee, “Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors,” Simul. Model. Pract. Theory, vol. 102, p. 102025, 2020, https://doi.org/10.1016/j.simpat.2019.102025.

C. Ren et al., “Short-Term Traffic Flow Prediction: A Method of Combined Deep Learnings,” J. Adv. Transp., vol. 2021, pp. 1–15, 2021, https://doi.org/10.1155/2021/9928073.

A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, 2018, https://doi.org/10.5815/ijitcs.2018.10.07.

A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice disease recognition using transfer xception convolution neural network,” J. Tek. Inform., vol. 4, no. 6, pp. 1541–1547, 2023, https://doi.org/10.52436/1.jutif.2023.4.6.1529.

H. Yuan and G. Li, “A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation,” Data Sci. Eng., vol. 6, no. 1, pp. 63–85, 2021, https://doi.org/10.1007/s41019-020-00151-z.

L. Erhan et al., “Smart anomaly detection in sensor systems: A multi-perspective review,” Inf. Fusion, vol. 67, pp. 64–79, 2021, https://doi.org/10.1016/j.inffus.2020.10.001.

A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, https://doi.org/10.11591/ijict.v8i3.pp128-138.

A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, https://doi.org/10.1109/ACCESS.2021.3083060.

A. A. Ojugo and O. Nwankwo, “Multi-Agent Bayesian Framework For Parametric Selection In The Detection And Diagnosis of Tuberculosis Contagion In Nigeria,” JINAV J. Inf. Vis., vol. 2, no. 2, pp. 69–76, 2021, https://doi.org/10.35877/454RI.jinav375.

C. Zoremsanga and J. Hussain, "Particle Swarm Optimized Deep Learning Models for Rainfall Prediction: A Case Study in Aizawl, Mizoram," in IEEE Access, vol. 12, pp. 57172-57184, 2024, https://doi.org/10.1109/ACCESS.2024.3390781.

B. Medina-Salgado, E. Sánchez-DelaCruz, P. Pozos-Parra, and J. E. Sierra, “Urban traffic flow prediction techniques: A review,” Sustain. Comput. Informatics Syst., vol. 35, p. 100739, 2022, https://doi.org/10.1016/j.suscom.2022.100739.

M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A. Liu, “A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks,” IEEE Access, vol. 7, pp. 23816–23833, 2019, https://doi.org/10.1109/ACCESS.2019.2899402.

X. Tang, K. An, K. Guo, Y. Huang, and S. Wang, “Outage analysis of non-orthogonal multiple access-based integrated satellite-terrestrial relay networks with hardware impairments,” IEEE Access, vol. 7, no. September, pp. 141258–141267, 2019, https://doi.org/10.1109/ACCESS.2019.2944406.

A. A. Ojugo and R. E. Yoro, “Migration Pattern As Threshold Parameter In The Propagation of The Covid-19 Epidemic Using An Actor-Based Model for SI-Social Graph,” JINAV J. Inf. Vis., vol. 2, no. 2, pp. 93–105, 2021, https://doi.org/10.35877/454RI.jinav379.

A. A. Ojugo and O. Nwankwo, “Modeling Mobility Pattern for the Corona-Virus Epidemic Spread Propagation and Death Rate in Nigeria using the Movement-Interaction-Return Model,” Int. J. Emerg. Trends Eng. Res., vol. 9, no. 6, pp. 821–826, 2021, https://doi.org/10.30534/ijeter/2021/30962021.

Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A Review and Comparative Study,” E3S Web Conf., vol. 351, pp. 1–6, 2022, https://doi.org/10.1051/e3sconf/202235101046.

S. Wang, J. Cao, and P. S. Yu, “Deep Learning for Spatio-Temporal Data Mining: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3681–3700, 2022, https://doi.org/10.1109/TKDE.2020.3025580.

J. Yao, C. Wang, C. Hu, and X. Huang, “Chinese Spam Detection Using a Hybrid BiGRU-CNN Network with Joint Textual and Phonetic Embedding,” Electronics, vol. 11, no. 15, p. 2418, 2022, https://doi.org/10.3390/electronics11152418.

A. A. Ojugo and A. O. Eboka, “Inventory prediction and management in Nigeria using market basket analysis associative rule mining: memetic algorithm based approach,” Int. J. Informatics Commun. Technol., vol. 8, no. 3, p. 128, 2019, https://doi.org/10.11591/ijict.v8i3.pp128-138.

C. H. Lee, H. C. Yang, Y. C. Wei, and W. K. Hsu, “Enabling blockchain based scm systems with a real time event monitoring function for preemptive risk management,” Appl. Sci., vol. 11, no. 11, 2021, https://doi.org/10.3390/app11114811.

T. Muralidharan and N. Nissim, “Improving malicious email detection through novel designated deep-learning architectures utilizing entire email,” Neural Networks, vol. 157, pp. 257-279, 2023, https://doi.org/10.1016/j.neunet.2022.09.002.

S. Basterrech and M. Wozniak, “Tracking changes using Kullback-Leibler divergence for the continual learning,” in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3279–3285, 2022, https://doi.org/10.1109/SMC53654.2022.9945547.

A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Quest For Convergence Solution Using Hybrid Genetic Algorithm Trained Neural Network Model For Metamorphic Malware Detection,” ARRUS J. Eng. Technol., vol. 2, no. 1, pp. 12–23, 2021, https://doi.org/10.35877/jetech613.

A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria,” ARRUS J. Math. Appl. Sci., vol. 1, no. 2, pp. 110–120, 2021, https://doi.org/10.35877/mathscience614.

E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card fraud detection using GA algorithm for feature selection,” J. Big Data, vol. 9, no. 1, p. 24, 2022, https://doi.org/10.1186/s40537-022-00573-8.

I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM deep model,” J. Big Data, vol. 8, no. 1, p. 151, 2021, https://doi.org/10.1186/s40537-021-00541-8.

L. E. Mukhanov, “Using bayesian belief networks for credit card fraud detection,” Proc. IASTED Int. Conf. Artif. Intell. Appl. AIA 2008, no. February 2008, pp. 221–225, 2008, https://www.actapress.com/Abstract.aspx?paperId=32306.

A. P. Binitie and O. J. Babatunde, “Evaluating the privacy issues, potential risks, and security measures associated with using social media platforms,” Int. J. African Res. Sustain. Stud., vol. 3, no. 2, pp. 167–179, 2024, https://cambridgeresearchpub.com/ijarss/article/view/139.

J. Herdiansyah, F. Ariefka, S. Putra, and D. Septiyanto, “Implementation of Zhang ’ s Camera Calibration Algorithm on a Single Camera for Accurate Pose Estimation Using ArUco Markers,” J. Fuzzy Syst. Control, vol. 2, no. 3, pp. 176–188, 2024, https://doi.org/10.59247/jfsc.v2i3.256.

E. A. L. Marazqah Btoush, X. Zhou, R. Gururajan, K. C. Chan, R. Genrich, and P. Sankaran, “A systematic review of literature on credit card cyber fraud detection using machine and deep learning,” PeerJ Comput. Sci., vol. 9, p. e1278, 2023, https://doi.org/10.7717/peerj-cs.1278.

A. S. Ali, E. H. Ali, S. W. Shneen, and L. H. Abood, “Adaptive Fuzzy Filter Technique for Mixed Noise Removing from Sonar Images Underwater,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 45–49, 2024, https://doi.org/10.59247/jfsc.v2i2.176.

A. A. Ojugo and O. Nwankwo, “Tree-classification Algorithm to Ease User Detection of Predatory Hijacked Journals: Empirical Analysis of Journal Metrics Rankings,” Int. J. Eng. Manuf., vol. 11, no. 4, pp. 1–9, 2021, https://doi.org/10.5815/ijem.2021.04.01.

H. Huang, Y. Song, Z. Fan, G. Xu, R. Yuan, and J. Zhao, “Estimation of walnut crop evapotranspiration under different micro-irrigation techniques in arid zones based on deep learning sequence models,” Results Appl. Math., vol. 20, no. September, p. 100412, 2023, https://doi.org/10.1016/j.rinam.2023.100412.

M. I. Akazue et al., “FiMoDeAL: pilot study on shortest path heuristics in wireless sensor network for fire detection and alert ensemble,” Bull. Electr. Eng. Informatics, vol. 13, no. 5, pp. 3534–3543, 2024, https://doi.org/10.11591/eei.v13i5.8084.

A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble,” Int. J. Informatics Commun. Technol., vol. 13, no. 1, p. 108, 2024, https://doi.org/10.11591/ijict.v13i1.pp108-115.

D. R. I. M. Setiadi, G. A. Trisnapradika, W. Herowati, and H. M. M. Islam, “Analyzing Preprocessing Impact on Machine Learning Classifiers for Cryotherapy and Immunotherapy Dataset,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 1–16, 2024, https://doi.org/10.62411/faith.2024-2.

M. D. Okpor et al., “Comparative Data Resample to Predict Subscription Services Attrition Using Tree-based Ensembles,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 117–128, 2024, https://doi.org/10.59247/jfsc.v2i2.213.

E. B. Wijayanti, D. R. I. M. Setiadi, and B. H. Setyoko, “Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 79–90, 2024, https://doi.org/10.62411/jcta.10057.

A. Suruliandi, G. Mariammal, and S. P. Raja, “Crop prediction based on soil and environmental characteristics using feature selection techniques,” Math. Comput. Model. Dyn. Syst., vol. 27, no. 1, pp. 117–140, 2021, https://doi.org/10.1080/13873954.2021.1882505.

F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 346–357, 2024, https://doi.org/10.62411/jcta.9539.

C. Singha and K. C. Swain, “Rice crop growth monitoring with sentinel 1 SAR data using machine learning models in google earth engine cloud,” Remote Sens. Appl. Soc. Environ., vol. 32, p. 101029, 2023, https://doi.org/10.1016/j.rsase.2023.101029.

M. Shehab, A. T. Khader, and M. A. Al-Betar, “A survey on applications and variants of the cuckoo search algorithm,” Applied soft computing, vol. 61, pp. 1041-1059, 2017, https://doi.org/10.1016/j.asoc.2017.02.034.

B. N. Supriya and C. B. Akki, “Sentiment prediction using enhanced xgboost and tailored random forest,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 191–199, 2021, https://doi.org/10.12785/ijcds/100119.

S. Meghana, B. . Charitha, S. Shashank, V. S. Sulakhe, and V. B. Gowda, “Developing An Application for Identification of Missing Children and Criminal Using Face Recognition.,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 12, no. 6, pp. 272–279, 2023, https://doi.org/10.17148/IJARCCE.2023.12648.

Sharmila, R. Sharma, D. Kumar, V. Puranik, and K. Gautham, “Performance Analysis of Human Face Recognition Techniques,” Proc. - 2019 4th Int. Conf. Internet Things Smart Innov. Usages, IoT-SIU 2019, no. May 2020, pp. 1–4, 2019, https://doi.org/10.1109/IoT-SIU.2019.8777610.

A. A. Ojugo, R. A. Abere, B. C. Orhionkpaiyo, R. E. Yoro, and A. O. Eboka, “Technical Issues for IP-Based Telephony in Nigeria,” Int. J. Wirel. Commun. Mob. Comput., vol. 1, no. 2, p. 58, 2013, https://doi.org/10.11648/j.wcmc.20130102.11.

L. D. S. B. Weerasinghe, R. M. J. C. K. Rajaguru, A. G. Jayasundara and D. K. Wickramanayeke, "Design and implementing VoIP network in the national defence university of Sri Lanka," SoutheastCon 2015, pp. 1-2, 2015, https://doi.org/10.1109/SECON.2015.7133030.

M. K. Elmezughi, O. Salih, T. J. Afullo, and K. J. Duffy, “Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels,” Sensors, vol. 22, no. 13, p. 4967, 2022, https://doi.org/10.3390/s22134967.

D. Kilroy, G. Healy, and S. Caton, “Using Machine Learning to Improve Lead Times in the Identification of Emerging Customer Needs,” IEEE Access, vol. 10, pp. 37774–37795, 2022, https://doi.org/10.1109/ACCESS.2022.3165043.

F. Safara, “A Computational Model to Predict Consumer Behaviour During COVID-19 Pandemic,” Comput. Econ., vol. 59, no. 4, pp. 1525–1538, 2022, https://doi.org/10.1007/s10614-020-10069-3.

K. Muhamada, D. R. Ignatius, M. Setiadi, U. Sudibyo, B. Widjajanto, and A. A. Ojugo, “Exploring Machine Learning and Deep Learning Techniques for Occluded Face Recognition: A Comprehensive Survey and Comparative Analysis,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 160–173, 2024, https://doi.org/10.62411/faith.2024-30.

V. O. Geteloma et al., “Enhanced data augmentation for predicting consumer churn rate with monetization and retention strategies : a pilot study,” Appl. Eng. Technol., vol. 3, no. 1, pp. 35–51, 2024, https://doi.org/10.31763/aet.v3i1.1408.

A. A. Ojugo and E. O. Ekurume, “Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, 2021, https://doi.org/10.30534/ijatcse/2021/851032021.

L. Shen, Y. Bao, N. Hasan, Y. Huang, X. Zhou, and C. Deng, “Intelligent crude oil price probability forecasting: Deep learning models and industry applications,” Computers in Industry, vol. 163, p. 104150, 2024, https://doi.org/10.1016/j.compind.2024.104150.

C. Li et al., “Improvement of wheat grain yield prediction model performance based on stacking technique,” Applied Sciences, vol. 11, no. 24, p. 12164, 2021, https://doi.org/10.3390/app112412164.

C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artificial Intelligence Review, vol. 54, pp. 1937-1967, 2021, https://doi.org/10.1007/s10462-020-09896-5.

N. M. Shahani, X. Zheng, C. Liu, F. U. Hassan, and P. Li, “Developing an XGBoost Regression Model for Predicting Young’s Modulus of Intact Sedimentary Rocks for the Stability of Surface and Subsurface Structures,” Front. Earth Sci., vol. 9, 2021, https://doi.org/10.3389/feart.2021.761990.

K. Vaishnavi, U. N. Kamath, B. A. Rao, and N. V. S. Reddy, “Predicting Mental Health Illness using Machine Learning Algorithms,” J. Phys. Conf. Ser., vol. 2161, no. 1, 2022, https://doi.org/10.1088/1742-6596/2161/1/012021.

O. Jaiyeoba, E. Ogbuju, O. T. Yomi, and F. Oladipo, “Development of a Model to Classify Skin Diseases using Stacking Ensemble Machine Learning Techniques,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 22–38, 2024, https://doi.org/10.62411/jcta.10488.

K. Deepika, M. P. S. Nagenddra, M. V. Ganesh, and N. Naresh, “Implementation of Credit Card Fraud Detection Using Random Forest Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 3, pp. 797–804, 2022, https://doi.org/10.22214/ijraset.2022.40702.

M. Reza Rezvan, A. Ghanbari Sorkhi, J. Pirgazi, and M. Mehdi Pourhashem Kallehbasti, “AdvanceSplice: Integrating N-gram one-hot encoding and ensemble modeling for enhanced accuracy,” Biomed. Signal Process. Control, vol. 92, no. August 2023, p. 106017, 2024, https://doi.org/10.1016/j.bspc.2024.106017.

J. K. Oladele et al., “BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 231–242, 2024, https://doi.org/10.62411/jcta.9509.

F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 407–420, 2024, https://doi.org/10.62411/jcta.10323.

L. Gauder, L. Pepino, P. Riera, S. Brussino, J. Vidal, A. Gravano, and L. Ferrer, “A Study on the manifestation of trust in speech,” arXiv preprint arXiv:2102.09370, 2021, https://doi.org/10.48550/arXiv.2102.09370.

B. O. Malasowe, A. E. Okpako, M. D. Okpor, P. O. Ejeh, A. A. Ojugo, and R. E. Ako, “FePARM: The Frequency-Patterned Associative Rule Mining Framework on Consumer Purchasing-Pattern for Online Shops,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 15, no. 2, pp. 15–28, 2024, https://doi.org/10.22624/AIMS/CISDI/V15N2P2-1.

B. O. Malasowe, D. V. Ojie, A. A. Ojugo, and M. D. Okpor, “Co-infection prevalence of Covid-19 underlying tuberculosis disease using a susceptible infect clustering Bayes Network,” Dutse J. Pure Appl. Sci., vol. 10, no. 2a, pp. 80–94, 2024, https://doi.org/10.4314/dujopas.v10i2a.8.

A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, 2024, https://doi.org/10.62411/faith.2024-12.

D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, 2024, https://doi.org/10.62411/faith.2024-11.

M. I. Akazue et al., “Handling Transactional Data Features via Associative Rule Mining for Mobile Online Shopping Platforms,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 530–538, 2024, https://doi.org/10.14569/IJACSA.2024.0150354.

H. Lu and C. Rakovski, “The Effect of Text Data Augmentation Methods and Strategies in Classification Tasks of Unstructured Medical Notes,” Res. Sq., vol. 1, no. 1, pp. 1–29, 2022, https://doi.org/10.21203/rs.3.rs-2039417/v1.

M. Bayer, M. A. Kaufhold, B. Buchhold, M. Keller, J. Dallmeyer, and C. Reuter, “Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers,” Int. J. Mach. Learn. Cybern., vol. 14, no. 1, pp. 135–150, 2023, https://doi.org/10.1007/s13042-022-01553-3.

A. A. Ojugo et al., “Forging a learner-centric blended-learning framework via an adaptive content-based architecture,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 40–53, 2023, https://doi.org/10.31763/sitech.v4i1.1186.

O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, p. 1210, 2020, https://doi.org/10.11591/ijeecs.v17.i3.pp1210-1214.

S. N. Okofu et al., “Pilot Study on Consumer Preference, Intentions and Trust on Purchasing-Pattern for Online Virtual Shops,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 7, pp. 804–811, 2024, https://doi.org/10.14569/IJACSA.2024.0150780.

R. K. Rachman, D. R. I. M. Setiadi, A. Susanto, K. Nugroho, and H. M. M. Islam, “Enhanced Vision Transformer and Transfer Learning Approach to Improve Rice Disease Recognition,” J. Comput. Theor. Appl., vol. 1, no. 4, 2024, https://doi.org/10.62411/jcta.10459.

A. Taravat and F. Del Frate, “Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection From Sar Images,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-1/W3, no. September 2013, pp. 421–424, 2013, https://doi.org/10.5194/isprsarchives-XL-1-W3-421-2013.

K. P. Parmar and T. Bhatt, "Crop Yield Prediction based on Feature Selection and Machine Learners: A Review," 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), pp. 354-358, 2022, https://doi.org/10.1109/ICAIS53314.2022.9742891.

A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, 2021, https://doi.org/10.11591/ijai.v10.i3.pp623-635.

A. M. Ifioko et al., “CoDuBoTeSS: A Pilot Study to Eradicate Counterfeit Drugs via a Blockchain Tracer Support System on the Nigerian Frontier,” J. Behav. Informatics, Digit. Humanit. Dev. Res., vol. 10, no. 2, pp. 53–74, 2024, https://doi.org/10.22624/AIMS/BIHIV10N1P6.

P. Charoen-Ung and P. Mittrapiyanuruk, “Sugarcane Yield Grade Prediction Using Random Forest with Forward Feature Selection and Hyper-parameter Tuning,” 2019, pp. 33–42, 2019, https://doi.org/10.1007/978-3-319-93692-5_4.

P. O. Ejeh et al., “Counterfeit Drugs Detection in the Nigeria Pharma-Chain via Enhanced Blockchain-based Mobile Authentication Service,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 2, pp. 25–44, 2024, https://doi.org/10.22624/AIMS/MATHS/V12N2P3.

B. Pavlyshenko and M. Stasiuk, “Data augmentation in text classification with multiple categories,” Electron. Inf. Technol., vol. 25, p. 749, 2024, https://doi.org/10.30970/eli.25.6.

M. D. Okpor et al., “Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 109–123, 2024, https://doi.org/10.62411/faith.2024-14.

A. A. Ojugo and A. O. Eboka, “Empirical Evidence of Socially-Engineered Attack Menace Among Undergraduate Smartphone Users in Selected Universities in Nigeria,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2103–2108, 2021, https://doi.org/10.30534/ijatcse/2021/861032021.

S. Rajendran and P. Jayagopal, “Accessing Covid19 epidemic outbreak in Tamilnadu and the impact of lockdown through epidemiological models and dynamic systems,” Measurement, vol. 169, p. 108432, 2021, https://doi.org/10.1016/j.measurement.2020.108432.

N. N. Wijaya, D. R. I. M. Setiadi, and A. R. Muslikh, “Music-Genre Classification using Bidirectional Long Short-Term Memory and Mel-Frequency Cepstral Coefficients,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 13–26, 2024, https://doi.org/10.62411/jcta.9655.

D. Nguyen et al., “Adaptive Evaluation of LQR Control using Particle Swarm Optimization for Pendubot,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 58–66, 2024, https://doi.org/10.59247/jfsc.v2i2.203.

S. Kumar, N. A. Jailani, A. R. Singh and S. Panchal, "Sentiment Analysis on Online Reviews using Machine Learning and NLTK," 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1183-1189, 2022, https://doi.org/10.1109/ICOEI53556.2022.9776850.

R. E. Ako et al., “Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 86–101, 2024, https://doi.org/10.62411/jcta.10562.

V. Umarani, A. Julian, and J. Deepa, “Sentiment Analysis using various Machine Learning and Deep Learning Techniques,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 385–394, 2021, https://doi.org/10.46481/jnsps.2021.308.

F. Jáñez-Martino, E. Fidalgo, S. González-Martínez, and J. Velasco-Mata, “Classification of Spam Emails through Hierarchical Clustering and Supervised Learning,” Natl. Cybersecurity Inst., vol. 24, pp. 1–4, 2020, https://doi.org/10.48550/arXiv.2005.08773.

A. Satpathi et al., “Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India,” Sustainability, vol. 15, no. 3, p. 2786, 2023, https://doi.org/10.3390/su15032786.

A. Bahl et al., “Recursive feature elimination in random forest classification supports nanomaterial grouping,” NanoImpact, vol. 15, p. 100179, 2019, https://doi.org/10.1016/j.impact.2019.100179.

C. L. Udeze, I. E. Eteng, and A. E. Ibor, “Application of Machine Learning and Resampling Techniques to Credit Card Fraud Detection,” J. Niger. Soc. Phys. Sci., vol. 12, p. 769, 2022, https://doi.org/10.46481/jnsps.2022.769.

Y. Abakarim, M. Lahby, and A. Attioui, “An Efficient Real Time Model For Credit Card Fraud Detection Based On Deep Learning,” in International Conference on Intelligent Systems, 2018, pp. 1–7, 2018, https://doi.org/10.1145/3289402.3289530.

M. Zareapoor and P. Shamsolmoali, “Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier,” Procedia Comput. Sci., vol. 48, pp. 679–685, 2015, https://doi.org/10.1016/j.procs.2015.04.201.

S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random forest for credit card fraud detection,” in 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6, 2018, https://doi.org/10.1109/ICNSC.2018.8361343.

N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, p. 102596, 2020, https://doi.org/10.1016/j.jisa.2020.102596.

A. A. Ojugo and A. O. Eboka, “An Empirical Evaluation On Comparative Machine Learning Techniques For Detection of The Distributed Denial of Service (DDoS) Attacks,” J. Appl. Sci. Eng. Technol. Educ., vol. 2, no. 1, pp. 18–27, 2020, https://doi.org/10.35877/454RI.asci2192.

S. Saponara, A. Elhanashi, and A. Gagliardi, “Real-time video fire/smoke detection based on CNN in antifire surveillance systems,” J. Real-Time Image Process., vol. 18, no. 3, pp. 889–900, 2021, https://doi.org/10.1007/s11554-020-01044-0.

E. A. Otorokpo et al., “DaBO-BoostE: Enhanced Data Balancing via Oversampling Technique for a Boosting Ensemble in Card-Fraud Detection,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 2, pp. 45–66, 2024, https://doi.org/10.22624/AIMS/MATHS/V12N2P4.

S. Paliwal, A. K. Mishra, R. K. Mishra, N. Nawaz, and M. Senthilkumar, “XGBRS Framework Integrated with Word2Vec Sentiment Analysis for Augmented Drug Recommendation,” Comput. Mater. Contin., vol. 72, no. 3, pp. 5345–5362, 2022, https://doi.org/10.32604/cmc.2022.025858.

A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Improved distribution and food safety for beef processing and management using a blockchain-tracer support framework,” Int. J. Informatics Commun. Technol., vol. 12, no. 3, p. 205, 2023, https://doi.org/10.11591/ijict.v12i3.pp205-213.

D. A. Al-Qudah, A. M. Al-Zoubi, P. A. Castillo-Valdivieso, and H. Faris, “Sentiment analysis for e-payment service providers using evolutionary extreme gradient boosting,” IEEE Access, vol. 8, pp. 189930–189944, 2020, https://doi.org/10.1109/ACCESS.2020.3032216.

B. Habib and F. Khursheed, “Performance evaluation of machine learning models for distributed denial of service attack detection using improved feature selection and hyper‐parameter optimization techniques,” Concurrency and Computation: Practice and Experience, vol. 34, no. 26, p. e7299, 2022, https://doi.org/10.1002/cpe.7299.

E. Blancaflor, H. K. S. Billo, B. Y. P. Saunar, J. M. P. Dignadice and P. T. Domondon, "Penetration assessment and ways to combat attack on Android devices through StormBreaker - a social engineering tool," 2023 6th International Conference on Information and Computer Technologies (ICICT), pp. 220-225, 2023, https://doi.org/10.1109/ICICT58900.2023.00043.

Z. Karimi, M. Mansour Riahi Kashani, and A. Harounabadi, “Feature Ranking in Intrusion Detection Dataset using Combination of Filtering Methods,” Int. J. Comput. Appl., vol. 78, no. 4, pp. 21–27, 2013, https://doi.org/10.5120/13478-1164.

J. Camargo and A. Young, “Feature Selection and Non-Linear Classifiers: Effects on Simultaneous Motion Recognition in Upper Limb,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 743–750, 2019, https://doi.org/10.1109/TNSRE.2019.2903986.

F. O. Aghware et al., “BloFoPASS: A blockchain food palliatives tracer support system for resolving welfare distribution crisis in Nigeria,” Int. J. Informatics Commun. Technol., vol. 13, no. 2, p. 178, 2024, https://doi.org/10.11591/ijict.v13i2.pp178-187.

M. J. Madhurya, H. L. Gururaj, B. C. Soundarya, and K. P. Vidyashree, and A. B. Rajendra, “Exploratory analysis of credit card fraud detection using machine learning techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 31-37, 2022, https://doi.org/10.1016/j.gltp.2022.04.006.

J. Johnen and D. Ronayne, “The only dance in town: Unique equilibrium in a generalized model of price competition,” The Journal of Industrial Economics, vol. 69, no. 3, pp. 595-614, 2021, https://doi.org/10.1111/joie.12264.

D. A. Oyemade, R. J. Ureigho, F. A.-A. Imouokhome, E. U. Omoregbee, J. Akpojaro, and A. A. Ojugo, “A Three Tier Learning Model for Universities in Nigeria,” J. Technol. Soc., vol. 12, no. 2, pp. 9–20, 2016, https://doi.org/10.18848/2381-9251/CGP/v12i02/9-20.

M. K. G. Roshan, “Multiclass Medical X-ray Image Classification using Deep Learning with Explainable AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 4518–4526, 2022, https://doi.org/10.22214/ijraset.2022.44541.

A. D. Bhavani and N. Mangla, “A Novel Network Intrusion Detection System Based on Semi-Supervised Approach for IoT,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 207–216, 2023 https://doi.org/10.14569/IJACSA.2023.0140424.

M. Jameaba, “Digitization, FinTech Disruption, and Financial Stability: The Case of the Indonesian Banking Sector,” SSRN Electron. J., vol. 34, pp. 1–44, 2020, https://doi.org/10.2139/ssrn.3529924.

S. Pavithra and K. Venkata Vikas, "Detecting Unbalanced Network Traffic Intrusions With Deep Learning," in IEEE Access, vol. 12, pp. 74096-74107, 2024, https://doi.org/10.1109/ACCESS.2024.3405187.

A. Jović, K. Brkić, N. Bogunović, A. Jovic, K. Brkic, and N. Bogunovic, “A review of feature selection methods with applications,” 2015 38th Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2015 - Proc., pp. 1200–1205, 2015, https://doi.org/10.1109/MIPRO.2015.7160458.

Y. H. Chang and M. S. Lee, “Incorporating Markov decision process on genetic algorithms to formulate trading strategies for stock markets,” Applied Soft Computing, vol. 52, pp. 1143-1153, 2017, https://doi.org/10.1016/j.asoc.2016.09.016.

A. A. Ojugo and I. P. Okobah, “Prevalence Rate of Hepatitis-B Virus Infection in the Niger Delta Region of Nigeria using a Graph-Diffusion Heuristic Model,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 975–8887, 2018, https://doi.org/10.5120/ijca2018916585.

A. A. Ojugo, D. A. Oyemade, R. E. Yoro, A. O. Eboka, M. O. Yerokun, and E. Ugboh, “A Comparative Evolutionary Models for Solving Sudoku,” Autom. Control Intell. Syst., vol. 1, no. 5, p. 113, 2013, https://doi.org/10.11648/j.acis.20130105.13.

S. Srinivasulu and A. Jain, “A comparative analysis of training methods for artificial neural network rainfall–runoff models,” Applied Soft Computing, vol. 6, no. 3, pp. 295-306, 2006, https://doi.org/10.1016/j.asoc.2005.02.002.

B. O. Malasowe et al., “Quest for Empirical Solution to Runoff Prediction in Nigeria via Random Forest Ensemble: Pilot Study,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 1, pp. 73–90, 2024, https://doi.org/10.22624/AIMS/BHI/V10N1P8.

F. U. Emordi et al., “TiSPHiMME: Time Series Profile Hidden Markov Ensemble in Resolving Item Location on Shelf Placement in Basket Analysis,” Digit. Innov. Contemp. Res. Sci., vol. 12, no. 1, pp. 33–48, 2024, https://doi.org/10.22624/AIMS/DIGITAL/V11N4P3.

C. Ma, H. Wang, and S. C. Hoi, “Multi-label thoracic disease image classification with cross-attention networks,” In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22, pp. 730-738, 2020, https://doi.org/10.1007/978-3-030-32226-7_81.

V. O. Geteloma et al., “AQuaMoAS: unmasking a wireless sensor-based ensemble for air quality monitor and alert system,” Appl. Eng. Technol., vol. 3, no. 2, pp. 86–101, 2024, https://doi.org/10.31763/aet.v3i2.1536.

C. C. Odiakaose et al., “Hybrid Genetic Algorithm Trained Bayesian Ensemble for Short Messages Spam Detection,” J. Adv. Math. Comput. Sci., vol. 12, no. 1, pp. 37–52, 2024, https://doi.org/10.22624/AIMS/MATHS/V12N1P4.

Downloads

Published

2024-10-21

How to Cite

[1]
A. P. Binitie, “Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow”, J Fuzzy Syst Control, vol. 2, no. 3, pp. 203–214, Oct. 2024.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)