Anomaly-based Detection of Denial of Service via Deep Learning Memetic Trained Modular Network
DOI:
https://doi.org/10.59247/jfsc.v3i1.274Keywords:
Anomaly Detection, Machine Learning, Memetic Algorithm, DDoS Attacks, Subterfuge Insider ThreatsAbstract
Internet’s popularity for dissemination of data – has birthed the proliferation of attacks that exploit networks for personal gain. Attackers via social-engineering attacks, gain unauthorized access to a compromised device via subterfuge mode and deny users of network resources. Denial of service (DoS) attack is carefully crafted to exploit high levels of network infrastructures. Our study presents a deep learning scheme to effectively classify between genuine and malicious packets. With benchmark XGBoost, Random Forest, and Decision Tree – our resultant model yields an accuracy 0.9984 and F1 0.9945 to outperform the benchmark XGBoost, RF and DT (with F1 of 0.9925, 0.9881 and 0.9805 – and Accuracy of 0.9981, 0.9964 and 0.9815) respectively. Proposed model correctly classified 13,418 cases with a 0.9984 accuracy and has only 283 cases incorrectly classified. Proposed memetic ensemble effectively differentiates malicious from genuine packets using anomaly-based detection.
References
B. O. Malasowe, D. V. Ojie, A. A. Ojugo, and M. D. Okpor, “Co-infection prevalence of Covid-19 underlying tuberculosis disease using a susceptible infect clustering Bayes Network,” Dutse J. Pure Appl. Sci., vol. 10, no. 2a, pp. 80–94, 2024, https://doi.org/10.4314/dujopas.v10i2a.8.
M. N. Al-Mhiqani, S. N. Isnin, R. Ahmed, and Z. Z. Abidi, “An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 1–5, 2021, https://doi.org/10.14569/IJACSA.2021.0120166.
A. Basit, M. Zafar, A. R. Javed and Z. Jalil, "A Novel Ensemble Machine Learning Method to Detect Phishing Attack," 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1-5, 2020, https://doi.org/10.1109/INMIC50486.2020.9318210.
A. A. Ojugo and O. D. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal University of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, p. 33, 2018, https://doi.org/10.5539/nct.v3n1p33.
D. R. I. M. Setiadi, A. Susanto, K. Nugroho, A. R. Muslikh, A. A. Ojugo, and H. Gan, “Rice yield forecasting using hybrid quantum deep learning model,” MDPI Comput., vol. 13, no. 191, pp. 1–18, 2024, https://doi.org/10.3390/computers13080191.
F. F. Haryani, S. Sarwanto, and D. Maryono, “Online learning in Indonesian higher education: New indicators during the COVID-19 pandemic,” Int. J. Eval. Res. Educ., vol. 12, no. 3, p. 1262, 2023, https://doi.org/10.11591/ijere.v12i3.24086.
A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist recommender system using implicit graph friendship algorithm for social networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, https://doi.org/10.11591/ijai.v9.i3.pp497-506.
O. B. Chibuzo and D. O. Isiaka, “Design and Implementation of Secure Browser for Computer-Based Tests,” Int. J. Innov. Sci. Res. Technol., vol. 5, no. 8, pp. 1347–1356, 2020, https://doi.org/10.38124/IJISRT20AUG526.
[9] B. O. Malasowe, M. I. Akazue, A. E. Okpako, F. O. Aghware, D. V. Ojie, and A. A. Ojugo, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023 https://doi.org/10.14569/IJACSA.2023.0140816.
F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, https://doi.org/10.14569/IJACSA.2023.0140610.
J. A. Abah, O. Honmane, T. J. Age, and S. O. Ogbule, “Design of Single-User-Mode Computer-Based Examination System for Senior Secondary Schools in Onitsha North Local Government Area of Anambra State, Nigeria,” SSRN Electron. J., vol. 6, no. January, pp. 12–21, 2022, https://doi.org/10.2139/ssrn.4061818.
M. I. Akazue et al., “Handling Transactional Data Features via Associative Rule Mining for Mobile Online Shopping Platforms,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 530–538, 2024, https://doi.org/10.14569/IJACSA.2024.0150354.
I. P. Okobah and A. A. Ojugo, “Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 34–43, 2018, https://doi.org/10.5120/ijca2018916586.
A. A. Ojugo and A. O. Eboka, “An Empirical Evaluation On Comparative Machine Learning Techniques For Detection of The Distributed Denial of Service (DDoS) Attacks,” J. Appl. Sci. Eng. Technol. Educ., vol. 2, no. 1, pp. 18–27, 2020, https://doi.org/10.35877/454RI.asci2192.
A. A. Ojugo, A. O. Eboka, R. E. Yoro, M. O. Yerokun, and F. N. Efozia, “Framework design for statistical fraud detection,” Math. Comput. Sci. Eng. Ser., vol. 50, pp. 176–182, 2015, https://www.inase.org/library/2015/.
B. Habib and F. Khursheed, “Performance evaluation of machine learning models for distributed denial of service attack detection using improved feature selection and hyper‐parameter optimization techniques,” Concurrency and Computation: Practice and Experience, vol. 34, no. 26, p. e7299, 2022, https://doi.org/10.1002/cpe.7299.
P. Sharma and N. Hasteer, "Analysis of linear sequential and extreme programming development methodology for a gaming application," 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 1916-1920, 2016, https://doi.org/10.1109/ICCSP.2016.7754505.
A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, https://doi.org/10.11591/ijeecs.v21.i3.pp1673-1682.
L. F. Rahman, M. Marufuzzaman, L. Alam, M. A. Bari, U. R. Sumaila, and L. M. Sidek, “Developing an ensembled machine learning prediction model for marine fish and aquaculture production,” Sustainability, vol. 13, no. 16, p. 9124, 2021, https://doi.org/10.3390/su13169124.
O. Thorat, N. Parekh, and R. Mangrulkar, “TaxoDaCML: Taxonomy based Divide and Conquer using machine learning approach for DDoS attack classification,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100048, 2021, https://doi.org/10.1016/j.jjimei.2021.100048.
K. G. Arachchige, P. Branch, and J. But, “An Analysis of Blockchain-Based IoT Sensor Network Distributed Denial of Service Attacks,” Sensors, vol. 24, no. 10, p. 3083, 2024, https://doi.org/10.3390/s24103083.
C. S. de Almeida et al., “Credit card fraud detection using enhanced Random Forest Classifier for imbalanced data,” Rev. Bras. Linguística Apl., vol. 5, no. 1, pp. 1689–1699, 2016, https://doi.org/10.1007/978-3-031-33743-7_48.
[23] S. F. Tan and G. C. Chung, “An Evaluation Study of User Authentication in the Malaysian FinTech Industry With uAuth Security Analytics Framework,” J. Cases Inf. Technol., vol. 25, no. 1, pp. 1–27, 2023, https://doi.org/10.4018/JCIT.318703.
T. Muralidharan and N. Nissim, “Improving malicious email detection through novel designated deep-learning architectures utilizing entire email,” Neural Networks, vol. 157, pp. 257-279, 2023, https://doi.org/10.1016/j.neunet.2022.09.002.
M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS : Ensemble Features Selection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–212, 2023, https://doi.org/10.33633/jcta.v1i2.9462.
A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, 2020, https://doi.org/10.35877/454RI.qems139.
A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, https://doi.org/10.7494/csci.2023.24.1.4551.
A. A. Ojugo and A. O. Eboka, “Inventory prediction and management in Nigeria using market basket analysis associative rule mining: memetic algorithm based approach,” Int. J. Informatics Commun. Technol., vol. 8, no. 3, p. 128, 2019, https://doi.org/10.11591/ijict.v8i3.pp128-138.
S. Pande and A. Khamparia, “Explainable Deep Neural network-based analysis on intrusion detection systems,” Comput. Sci., vol. 24, no. 1, pp. 5–30, 2023, https://doi.org/10.7494/csci.2023.24.1.4551.
S. Khanam, I. Bin Ahmedy, M. Y. Idna Idris, M. H. Jaward, and A. Q. Bin Md Sabri, “A Survey of Security Challenges, Attacks Taxonomy and Advanced Countermeasures in the Internet of Things,” IEEE Access, vol. 8, pp. 219709–219743, 2020, https://doi.org/10.1109/ACCESS.2020.3037359.
F. K. Nishi et al., “Electronic Healthcare Data Record Security Using Blockchain and Smart Contract,” J. Sensors, vol. 2022, pp. 1–22, 2022, https://doi.org/10.1155/2022/7299185.
E. Bandara, S. Shetty, R. Mukkamala, A. Rahaman and X. Liang, "LUUNU — Blockchain, MISP, Model Cards and Federated Learning Enabled Cyber Threat Intelligence Sharing Platform," 2022 Annual Modeling and Simulation Conference (ANNSIM), pp. 235-245, 2022, https://doi.org/10.23919/ANNSIM55834.2022.9859355.
A. A. Ojugo and E. O. Ekurume, “Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, 2021, https://doi.org/10.30534/ijatcse/2021/851032021.
E. Adishi, P. O. Ejeh, E. Okoro, and A. Jisu, “Reinforcement deep learning memetic algorithm for detection of short messaging services spam using filters to curb insider threats in organizations,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022, https://journal.fupre.edu.ng/index.php/fjsir/article/view/225.
A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, 2018, https://doi.org/10.5815/ijitcs.2018.10.07.
A. A. Ojugo and O. D. Otakore, “Computational solution of networks versus cluster grouping for social network contact recommender system,” Int. J. Informatics Commun. Technol., vol. 9, no. 3, p. 185, 2020, https://doi.org/10.11591/ijict.v9i3.pp185-194.
A. A. Ojugo et al., “Dependable Community-Cloud Framework for Smartphones,” Am. J. Networks Commun., vol. 4, no. 4, p. 95, 2015, https://doi.org/10.11648/j.ajnc.20150404.13.
A. A. Ojugo, E. Ben-Iwhiwhu, O. D. Kekeje, M. O. Yerokun, and I. J. Iyawa, “Malware Propagation on Social Time Varying Networks: A Comparative Study of Machine Learning Frameworks,” Int. J. Mod. Educ. Comput. Sci., vol. 6, no. 8, pp. 25–33, 2014, https://doi.org/10.5815/ijmecs.2014.08.04.
A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 1–11, Oct. 2023, https://doi.org/10.33633/jcta.v1i2.9259.
D. A. Obasuyi et al., “NiCuSBlockIoT: Sensor-based Cargo Assets Management and Traceability Blockchain Support for Nigerian Custom Services,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 15, no. 2, pp. 45–64, 2024, https://doi.org/10.22624/AIMS/CISDI/V15N2P4.
A. M. Ifioko et al., “CoDuBoTeSS: A Pilot Study to Eradicate Counterfeit Drugs via a Blockchain Tracer Support System on the Nigerian Frontier,” J. Behav. Informatics, Digit. Humanit. Dev. Res., vol. 10, no. 2, pp. 53–74, 2024, https://doi.org/10.22624/AIMS/BIHIV10N1P6.
S. K. Majhi, M. Sahoo, and R. Pradhan, “A space transformational crow search algorithm for optimization problems,” Evolutionary Intelligence, vol. 13, no. 3, pp. 345-364, 2020, https://doi.org/10.1007/s12065-019-00294-7.
V. O. Geteloma et al., “Enhanced data augmentation for predicting consumer churn rate with monetization and retention strategies: a pilot study,” Appl. Eng. Technol., vol. 3, no. 1, pp. 35–51, 2024, https://doi.org/10.31763/aet.v3i1.1408.
H. Zardi and H. Alrajhi, “Anomaly Discover: A New Community-based Approach for Detecting Anomalies in Social Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 912–920, 2023, https://doi.org/10.14569/IJACSA.2023.01404101.
H. A. Abdulmalik and A. A. Yassin, “Secure two-factor mutual authentication scheme using shared image in medical healthcare environment,” Bull. Electr. Eng. Informatics, vol. 12, no. 4, pp. 2474–2483, 2023, https://doi.org/10.11591/eei.v12i4.4459.
A. A. Ojugo and D. A. Oyemade, “Boyer moore string-match framework for a hybrid short message service spam filtering technique,” IAES Int. J. Artif. Intell., vol. 10, no. 3, pp. 519–527, 2021, https://doi.org/10.11591/ijai.v10.i3.pp519-527.
S. E. Brizimor et al., “WiSeCart: Sensor-based Smart-Cart with Self-Payment Mode to Improve Shopping Experience and Inventory Management,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 1, pp. 53–74, 2024, https://doi.org/10.22624/AIMS/SIJ/V10N1P7.
R. R. Atuduhor et al., “StreamBoostE: A Hybrid Boosting-Collaborative Filter Scheme for Adaptive User-Item Recommender for Streaming Services,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 2, pp. 89–106, 2024, https://doi.org/10.22624/AIMS/V10N2P8.
P. O. Ejeh et al., “Counterfeit Drugs Detection in the Nigeria Pharma-Chain via Enhanced Blockchain-based Mobile Authentication Service,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 2, pp. 25–44, 2024, https://doi.org/10.22624/AIMS/MATHS/V12N2P3.
B. O. Malasowe, A. E. Okpako, M. D. Okpor, P. O. Ejeh, A. A. Ojugo, and R. E. Ako, “FePARM: The Frequency-Patterned Associative Rule Mining Framework on Consumer Purchasing-Pattern for Online Shops,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 15, no. 2, pp. 15–28, 2024, https://doi.org/10.22624/AIMS/CISDI/V15N2P2-1.
R. E. Ako et al., “Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 86–101, Jun. 2024, https://doi.org/10.62411/jcta.10562.
M. D. Okpor et al., “Comparative Data Resample to Predict Subscription Services Attrition Using Tree-based Ensembles,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 117–128, 2024, https://doi.org/10.59247/jfsc.v2i2.213.
F. O. Aghware et al., “BloFoPASS: A blockchain food palliatives tracer support system for resolving welfare distribution crisis in Nigeria,” Int. J. Informatics Commun. Technol., vol. 13, no. 2, p. 178, 2024, https://doi.org/10.11591/ijict.v13i2.pp178-187.
M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A. Liu, “A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks,” IEEE Access, vol. 7, pp. 23816–23833, 2019, https://doi.org/10.1109/ACCESS.2019.2899402.
C. Zoremsanga and J. Hussain, "Particle Swarm Optimized Deep Learning Models for Rainfall Prediction: A Case Study in Aizawl, Mizoram," in IEEE Access, vol. 12, pp. 57172-57184, 2024, https://doi.org/10.1109/ACCESS.2024.3390781.
X. Tang, K. An, K. Guo, Y. Huang, and S. Wang, “Outage analysis of non-orthogonal multiple access-based integrated satellite-terrestrial relay networks with hardware impairments,” IEEE Access, vol. 7, no. September, pp. 141258–141267, 2019, https://doi.org/10.1109/ACCESS.2019.2944406.
B. Medina-Salgado, E. Sánchez-DelaCruz, P. Pozos-Parra, and J. E. Sierra, “Urban traffic flow prediction techniques: A review,” Sustain. Comput. Informatics Syst., vol. 35, p. 100739, 2022, https://doi.org/10.1016/j.suscom.2022.100739.
A. A. Ojugo and O. Nwankwo, “Multi-Agent Bayesian Framework For Parametric Selection In The Detection And Diagnosis of Tuberculosis Contagion In Nigeria,” JINAV J. Inf. Vis., vol. 2, no. 2, pp. 69–76, Mar. 2021, https://doi.org/10.35877/454RI.jinav375.
A. A. Ojugo and R. E. Yoro, “Migration Pattern As Threshold Parameter In The Propagation of The Covid-19 Epidemic Using An Actor-Based Model for SI-Social Graph,” JINAV J. Inf. Vis., vol. 2, no. 2, pp. 93–105, 2021, https://doi.org/10.35877/454RI.jinav379.
A. A. Ojugo and O. Nwankwo, “Modeling Mobility Pattern for the Corona-Virus Epidemic Spread Propagation and Death Rate in Nigeria using the Movement-Interaction-Return Model,” Int. J. Emerg. Trends Eng. Res., vol. 9, no. 6, pp. 821–826, 2021, https://doi.org/10.30534/ijeter/2021/30962021.
Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A Review and Comparative Study,” E3S Web Conf., vol. 351, pp. 1–6, 2022, https://doi.org/10.1051/e3sconf/202235101046.
S. Wang, J. Cao, and P. S. Yu, “Deep Learning for Spatio-Temporal Data Mining: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3681–3700, 2022, https://doi.org/10.1109/TKDE.2020.3025580.
J. Yao, C. Wang, C. Hu, and X. Huang, “Chinese Spam Detection Using a Hybrid BiGRU-CNN Network with Joint Textual and Phonetic Embedding,” Electronics, vol. 11, no. 15, p. 2418, 2022, https://doi.org/10.3390/electronics11152418.
C. H. Lee, H. C. Yang, Y. C. Wei, and W. K. Hsu, “Enabling blockchain based scm systems with a real time event monitoring function for preemptive risk management,” Appl. Sci., vol. 11, no. 11, 2021, https://doi.org/10.3390/app11114811.
D. A. Oyemade and A. A. Ojugo, “A property oriented pandemic surviving trading model,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 7397–7404, 2020, https://doi.org/10.30534/ijatcse/2020/71952020.
S. Basterrech and M. Wozniak, “Tracking changes using Kullback-Leibler divergence for the continual learning,” in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3279–3285, 2022, https://doi.org/10.1109/SMC53654.2022.9945547.
A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Quest For Convergence Solution Using Hybrid Genetic Algorithm Trained Neural Network Model For Metamorphic Malware Detection,” ARRUS J. Eng. Technol., vol. 2, no. 1, pp. 12–23, 2021, https://doi.org/10.35877/jetech613.
A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria,” ARRUS J. Math. Appl. Sci., vol. 1, no. 2, pp. 110–120, 2021, https://doi.org/10.35877/mathscience614.
E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card fraud detection using GA algorithm for feature selection,” J. Big Data, vol. 9, no. 1, p. 24, 2022, https://doi.org/10.1186/s40537-022-00573-8.
A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice disease recognition using transfer xception convolution neural network,” J. Tek. Inform., vol. 4, no. 6, pp. 1541–1547, 2023, https://doi.org/10.52436/1.jutif.2023.4.6.1529.
A. P. Binitie and O. J. Babatunde, “Evaluating the privacy issues, potential risks, and security measures associated with using social media platforms,” Int. J. African Res. Sustain. Stud., vol. 3, no. 2, pp. 167–179, 2024, https://cambridgeresearchpub.com/ijarss/article/view/139.
J. Herdiansyah, F. Ariefka, S. Putra, and D. Septiyanto, “Implementation of Zhang’ s Camera Calibration Algorithm on a Single Camera for Accurate Pose Estimation Using ArUco Markers,” J. Fuzzy Syst. Control, vol. 2, no. 3, pp. 176–188, 2024, https://doi.org/10.59247/jfsc.v2i3.256.
E. A. L. Marazqah Btoush, X. Zhou, R. Gururajan, K. C. Chan, R. Genrich, and P. Sankaran, “A systematic review of literature on credit card cyber fraud detection using machine and deep learning,” PeerJ Comput. Sci., vol. 9, p. e1278, 2023, https://doi.org/10.7717/peerj-cs.1278.
E. Blancaflor, H. K. S. Billo, B. Y. P. Saunar, J. M. P. Dignadice and P. T. Domondon, "Penetration assessment and ways to combat attack on Android devices through StormBreaker - a social engineering tool," 2023 6th International Conference on Information and Computer Technologies (ICICT), pp. 220-225, 2023, https://doi.org/10.1109/ICICT58900.2023.00043.
A. S. Ali, E. H. Ali, S. W. Shneen, and L. H. Abood, “Adaptive Fuzzy Filter Technique for Mixed Noise Removing from Sonar Images Underwater,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 45–49, 2024, https://doi.org/10.59247/jfsc.v2i2.176.
A. A. Ojugo and O. Nwankwo, “Tree-classification Algorithm to Ease User Detection of Predatory Hijacked Journals: Empirical Analysis of Journal Metrics Rankings,” Int. J. Eng. Manuf., vol. 11, no. 4, pp. 1–9, 2021, https://doi.org/10.5815/ijem.2021.04.01.
H. Huang, Y. Song, Z. Fan, G. Xu, R. Yuan, and J. Zhao, “Estimation of walnut crop evapotranspiration under different micro-irrigation techniques in arid zones based on deep learning sequence models,” Results Appl. Math., vol. 20, no. September, p. 100412, 2023, https://doi.org/10.1016/j.rinam.2023.100412.
M. I. Akazue et al., “FiMoDeAL: pilot study on shortest path heuristics in wireless sensor network for fire detection and alert ensemble,” Bull. Electr. Eng. Informatics, vol. 13, no. 5, pp. 3534–3543, 2024, https://doi.org/10.11591/eei.v13i5.8084.
A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble,” Int. J. Informatics Commun. Technol., vol. 13, no. 1, p. 108, 2024, https://doi.org/10.11591/ijict.v13i1.pp108-115.
T. Sahmoud and D. M. Mikki, “Spam Detection Using BERT,” Front. Soc. Sci. Technol., vol. 14, no. 2, pp. 23–35, 2022, https://doi.org/10.48550/arXiv.2206.02443.
A. A. Ojugo et al., “Evidence of Students’ Academic Performance at the Federal College of Education Asaba Nigeria: Mining Education Data,” Knowl. Eng. Data Sci., vol. 6, no. 2, pp. 145–156, 2023, https://doi.org/10.17977/um018v6i22023p145-156.
M. A. Haque et al., “Cybersecurity in Universities: An Evaluation Model,” SN Comput. Sci., vol. 4, no. 5, 2023, https://doi.org/10.1007/s42979-023-01984-x.
C. C. Odiakaose et al., “Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 269–283, 2024, https://doi.org/10.62411/faith.3048-3719-43.
E. U. Omede, A. E. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 273–283, Feb. 2024, https://doi.org/10.62411/jcta.9541.
S. Yuan and X. Wu, “Deep learning for insider threat detection: Review, challenges and opportunities,” Comput. Secur., vol. 104, 2021, https://doi.org/10.1016/j.cose.2021.102221.
K. A. Egbe, A. Ike, and F. Egbe, “Knowledge and burden of hepatitis B virus in Nasarawa State, Nigeria,” Scientific African, vol. 22, p. e01938, 2023, https://doi.org/10.1016/j.sciaf.2023.e01938.
J. K. Oladele et al., “BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 231–242, 2024, https://doi.org/10.62411/jcta.9509.
E. A. Otorokpo et al., “DaBO-BoostE: Enhanced Data Balancing via Oversampling Technique for a Boosting Ensemble in Card-Fraud Detection,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 2, pp. 45–66, 2024, https://doi.org/10.22624/AIMS/MATHS/V12N2P4.
F. U. Emordi et al., “TiSPHiMME: Time Series Profile Hidden Markov Ensemble in Resolving Item Location on Shelf Placement in Basket Analysis,” Digit. Innov. Contemp. Res. Sci., vol. 12, no. 1, pp. 33–48, 2024, https://doi.org/10.22624/AIMS/DIGITAL/V11N4P3.
B. O. Malasowe et al., “Quest for Empirical Solution to Runoff Prediction in Nigeria via Random Forest Ensemble: Pilot Study,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 1, pp. 73–90, 2024, https://doi.org/10.22624/AIMS/BHI/V10N1P8.
S. N. Okofu et al., “Pilot Study on Consumer Preference, Intentions and Trust on Purchasing-Pattern for Online Virtual Shops,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 7, pp. 804–811, 2024, https://doi.org/10.14569/IJACSA.2024.0150780.
M. Dewis and T. Viana, “Phish responder: A hybrid machine learning approach to detect phishing and spam emails,” Applied System Innovation, vol. 5, no. 4, p. 73, 2022, https://doi.org/10.3390/asi5040073.
B. N. Supriya and C. B. Akki, “Sentiment prediction using enhanced xgboost and tailored random forest,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 191–199, 2021, https://doi.org/10.12785/ijcds/100119.
A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 37–47, 2023, https://doi.org/10.33633/jcta.v1i2.9355.
A. D. Bhavani and N. Mangla, “A Novel Network Intrusion Detection System Based on Semi-Supervised Approach for IoT,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 207–216, 2023, https://doi.org/10.14569/IJACSA.2023.0140424.
M. D. Okpor et al., “Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 109–123, 2024, https://doi.org/10.62411/faith.2024-14.
K. Muhamada, D. R. Ignatius, M. Setiadi, U. Sudibyo, B. Widjajanto, and A. A. Ojugo, “Exploring Machine Learning and Deep Learning Techniques for Occluded Face Recognition: A Comprehensive Survey and Comparative Analysis,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 160–173, 2024, https://doi.org/10.62411/faith.2024-30.
V. O. Geteloma et al., “AQuaMoAS: unmasking a wireless sensor-based ensemble for air quality monitor and alert system,” Appl. Eng. Technol., vol. 3, no. 2, pp. 86–101, 2024, https://doi.org/10.31763/aet.v3i2.1536.
A. A. Ojugo, A. O. Eboka, E. O. Okonta, R. E. Yoro, and F. O. Aghware, “Predicting Behavioural Evolution on a Graph-Based Model,” Adv. Networks, vol. 3, no. 2, p. 8, 2015, https://doi.org/10.11648/j.net.20150302.11.
F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 407–420, 2024, https://doi.org/10.62411/jcta.10323.
D. R. I. M. Setiadi, A. R. Muslikh, S. W. Iriananda, W. Warto, J. Gondohanindijo, and A. A. Ojugo, “Outlier Detection Using Gaussian Mixture Model Clustering to Optimize XGBoost for Credit Approval Prediction,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 244–255, 2024, https://doi.org/10.62411/jcta.11638.
A. A. Ojugo and O. D. Otakore, “Forging An Optimized Bayesian Network Model With Selected Parameters For Detection of The Coronavirus In Delta State of Nigeria,” J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 1, pp. 37–45, 2021, https://doi.org/10.35877/454RI.asci2163.
A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, 2021, https://doi.org/10.11591/ijai.v10.i3.pp623-635.
A. A. Ojugo et al., “Forging a learner-centric blended-learning framework via an adaptive content-based architecture,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 40–53, 2023, https://doi.org/10.31763/sitech.v4i1.1186.
O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, p. 1210, 2020, https://doi.org/10.11591/ijeecs.v17.i3.pp1210-1214.
D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, 2024, https://doi.org/10.62411/faith.2024-11.
A. A. Ojugo and A. O. Eboka, “Empirical Evidence of Socially-Engineered Attack Menace Among Undergraduate Smartphone Users in Selected Universities in Nigeria,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2103–2108, 2021, https://doi.org/10.30534/ijatcse/2021/861032021.
D. Nguyen et al., “Adaptive Evaluation of LQR Control using Particle Swarm Optimization for Pendubot,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 58–66, 2024, https://doi.org/10.59247/jfsc.v2i2.203.
S. Pavithra and K. Venkata Vikas, "Detecting Unbalanced Network Traffic Intrusions With Deep Learning," in IEEE Access, vol. 12, pp. 74096-74107, 2024, https://doi.org/10.1109/ACCESS.2024.3405187.
A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Improved distribution and food safety for beef processing and management using a blockchain-tracer support framework,” Int. J. Informatics Commun. Technol., vol. 12, no. 3, p. 205, 2023, https://doi.org/10.11591/ijict.v12i3.pp205-213.
A. A. Ojugo and O. D. Otakore, “Intelligent Peer-To-Peer Banking Framework: Advancing The Frontiers of Agent Banking For Financial Inclusion In Nigeria Via Smartphones,” Quant. Econ. Manag. Stud., vol. 1, no. 5, pp. 300–311, 2020, https://doi.org/10.35877/454RI.qems140.
Narayanan and Jayashree, “Implementation of Efficient Machine Learning Techniques for Prediction of Cardiac Disease using SMOTE,” Procedia Comput. Sci., vol. 233, no. 2023, pp. 558–569, 2024, https://doi.org/10.1016/j.procs.2024.03.245.
A. P. Binitie et al., “Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow,” J. Fuzzy Syst. Control, vol. 2, no. 3, pp. 203–214, 2024, https://doi.org/10.59247/jfsc.v2i3.267.
A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, 2024, https://doi.org/10.62411/faith.2024-12.
F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 346–357, 2024, https://doi.org/10.62411/jcta.9539.
S. Khaki, L. Wang, and S. V. Archontoulis, “A CNN-RNN Framework for Crop Yield Prediction,” Front. Plant Sci., vol. 10, 2020, https://doi.org/10.3389/fpls.2019.01750.

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Patrick Ogholuwarami Ejeh, Fidelis Oghenevweta Adjogbe, David Nwanze, Amaka Patience Binitie

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.