Smart Dc to DC converter for a Small Drone Based upon Deep Learning Technique

Authors

  • Mays Abbas Al-bahrany AL Furat Al Awast Technical University
  • Ahmad T. Abdul Sadda AL Furat Al Awast Technical University

DOI:

https://doi.org/10.59247/jfsc.v1i2.43

Keywords:

Buck-Boost Converter, PID, Fuzzy Logic Control, hybrid fuzzy-PID controller

Abstract

Flying a small robot like a drone needs more conservative energy, small solar cell size needs to robust efficient DC-to-DC converter. Mathematical analysis for finding the optimal duty cycle in the PWM (pulse width modulation) is presented at different supplies voltage, considering a low voltage of 8 volts for low-speed motor rotation speed and 18 volts for high speed of the rotation motor. The dc-dc converter gets the power desired from the small robotic by using a dc-dc buck-boost converter with (PID control, smart tuning different rules fuzzy logic control, and a hybrid fuzzy-PID controller as one solution to be improved the controller to be capable on process any disturbances on the inductor or the desired value of the output voltage of the dc-dc converter

References

M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “A survey on voltage boosting techniques for step-up DC-DC converters,” 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-8, 2016, https://doi.org/10.1109/ECCE.2016.7854792.

B. S. Revathi, M. Prabhakar, “Non isolated high gain DC-DC converter topologies for PV applications–A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 920-933, 2016, https://doi.org/10.1016/j.rser.2016.08.057.

A. Ahmed, M. A. Khan, M. Badawy, Y. Sozer and I. Husain, “Performance analysis of bidirectional DC-DC converters for electric vehicles and charging infrastructure,” 2013 IEEE Energy Conversion Congress and Exposition, pp. 1401-1408, 2013, https://doi.org/10.1109/ECCE.2013.6646869.

N. Mukherjee and D. Strickland, “Control of Cascaded DC–DC Converter-Based Hybrid Battery Energy Storage Systems—Part I: Stability Issue,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2340-2349, 2016, https://doi.org/10.1109/TIE.2015.2511159.

A. Kanchanaharuthai, V. Chankong and K. A. Loparo, “Transient Stability and Voltage Regulation in Multimachine Power Systems Vis-à-Vis STATCOM and Battery Energy Storage,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2404-2416, 2015, https://doi.org/10.1109/TPWRS.2014.2359659.

I. Serban, R. Teodorescu, C. Marinescu, “Energy storage systems impact on the short‐term frequency stability of distributed autonomous microgrids, an analysis using aggregate models,” IET Renewable Power Generation, vol. 7, no. 5, pp. 531-539, 2013, https://doi.org/10.1049/iet-rpg.2011.0283.

N. Mithulananthan, R. Shah and K. Y. Lee, “Small-Disturbance Angle Stability Control With High Penetration of Renewable Generations,” IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1463-1472, 2014, https://doi.org/10.1109/TPWRS.2013.2292615.

Á. Ortega and F. Milano, “Generalized Model of VSC-Based Energy Storage Systems for Transient Stability Analysis,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3369-3380, 2016, https://doi.org/10.1109/TPWRS.2015.2496217.

D. Bazargan, S. Filizadeh and A. M. Gole, “Stability Analysis of Converter-Connected Battery Energy Storage Systems in the Grid,” IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1204-1212, 2014, https://doi.org/10.1109/TSTE.2014.2337053.

X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, “State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2804-2815, 2014, https://doi.org/10.1109/TIE.2013.2279374.

F. A. Inthamoussou, J. Pegueroles-Queralt and F. D. Bianchi, “Control of a Supercapacitor Energy Storage System for Microgrid Applications,” IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 690-697, 2013, https://doi.org/10.1109/TEC.2013.2260752.

A. Bostrom, A. von Jouanne, T. K. A. Brekken and A. Yokochi, “Supercapacitor energy storage systems for voltage and power flow stabilization,” 2013 1st IEEE Conference on Technologies for Sustainability (SusTech), pp. 230-237, 2013, https://doi.org/10.1109/SusTech.2013.6617326.

R. G. Wandhare and V. Agarwal, “Novel Stability Enhancing Control Strategy for Centralized PV-Grid Systems for Smart Grid Applications,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1389-1396, 2014, https://doi.org/10.1109/TSG.2013.2279605.

R. M. Kamel, A. Chaouachi and K. Nagasaka, “Three Control Strategies to Improve the Microgrid Transient Dynamic Response During Isolated Mode: A Comparative Study,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1314-1322, 2013, https://doi.org/10.1109/TIE.2012.2209609.

J. R. Massing, M. Stefanello, H. A. Grundling and H. Pinheiro, “Adaptive Current Control for Grid-Connected Converters With LCL Filter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4681-4693, 2012, https://doi.org/10.1109/TIE.2011.2177610.

Y. A. -R. I. Mohamed, “Mitigation of Converter-Grid Resonance, Grid-Induced Distortion, and Parametric Instabilities in Converter-Based Distributed Generation,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 983-996, 2011, https://doi.org/10.1109/TPEL.2010.2070878.

G. R. Walker and P. C. Sernia, “Cascaded DC-DC converter connection of photovoltaic modules,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1130-1139, 2004, https://doi.org/10.1109/TPEL.2004.830090.

A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault and B. Raison, “Cascaded DC–DC Converter Photovoltaic Systems: Power Optimization Issues,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 403-411, 2011, https://doi.org/10.1109/TIE.2010.2043041.

Q. Wei, B. Wu, D. Xu and N. R. Zargari, “Model Predictive Control of Capacitor Voltage Balancing for Cascaded Modular DC–DC Converters,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 752-761, 2017, https://doi.org/10.1109/TPEL.2016.2530869.

J. Yang, Z. He, H. Pang and G. Tang, “The Hybrid-Cascaded DC–DC Converters Suitable for HVdc Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5358- 5363, 2015, https://doi.org/10.1109/TPEL.2015.2420666.

G. Chen et al., “A Family of Zero-Voltage-Switching Magnetic Coupling Nonisolated Bidirectional DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6223-6233, 2017, https://doi.org/10.1109/TIE.2017.2682007.

M. R. Mohammadi and H. Farzanehfard, “Family of Soft-Switching Bidirectional Converters With Extended ZVS Range,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7000-7008, 2017, https://doi.org/10.1109/TIE.2017.2686308.

C. C. Lin, L. S. Yang, G. Wu, “Study of a non‐isolated bidirectional DC–DC converter,” IET Power Electronics, vol. 6, no. 1, pp. 30-37, 2013, https://doi.org/10.1049/iet-pel.2012.0338.

H. Ardi, R. R. Ahrabi, S. N. Ravadanegh, “Non‐isolated bidirectional DC–DC converter analysis and implementation,” IET Power Electronics, vol. 7, vol. 12, pp. 3033-3044, 2014, https://doi.org/10.1049/iet-pel.2013.0898.

H. Ardi, A. Ajami, F. Kardan and S. N. Avilagh, “Analysis and Implementation of a Nonisolated Bidirectional DC–DC Converter With High Voltage Gain,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 4878-4888, 2016, https://doi.org/10.1109/TIE.2016.2552139.

H. Bahrami, S. Farhangi, H. Iman-Eini and E. Adib, “A New Interleaved Coupled-Inductor Nonisolated Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain Ratio,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5529-5538, 2018, https://doi.org/10.1109/TIE.2017.2782221.

M. P. Bahrman and B. K. Johnson, “The ABCs of HVDC transmission technologies,” IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 32-44, 2007, https://doi.org/10.1109/MPAE.2007.329194.

N. Flourentzou, V. G. Agelidis and G. D. Demetriades, “VSC-Based HVDC Power Transmission Systems: An Overview,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 592-602, 2009, https://doi.org/10.1109/TPEL.2008.2008441.

B. Gemmell, J. Dorn, D. Retzmann and D. Soerangr, “Prospects of multilevel VSC technologies for power transmission,” 2008 IEEE/PES Transmission and Distribution Conference and Exposition, pp. 1-16, 2008, https://doi.org/10.1109/TDC.2008.4517192.

S. Kouro et al., “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, 2010, https://doi.org/10.1109/TIE.2010.2049719.

J. Candelaria and J. -D. Park, “VSC-HVDC system protection: A review of current methods,” 2011 IEEE/PES Power Systems Conference and Exposition, pp. 1-7, 2011, https://doi.org/10.1109/PSCE.2011.5772604.

J. Yang, J. Zheng, G. Tang and Z. He, “Characteristics and Recovery Performance of VSC-HVDC DC Transmission Line Fault,” 2010 Asia-Pacific Power and Energy Engineering Conference, pp. 1-4, 2010, https://doi.org/10.1109/APPEEC.2010.5449063.

A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3, p. 6, 2003, https://doi.org/10.1109/PTC.2003.1304403.

Downloads

Published

2023-08-30

How to Cite

[1]
M. A. Al-bahrany and A. T. A. Sadda, “Smart Dc to DC converter for a Small Drone Based upon Deep Learning Technique”, JFSC, vol. 1, no. 2, pp. 55–60, Aug. 2023.

Issue

Section

Articles