Identification of Breast Tumors With Image Processing Using Canny Edge Detection

Authors

  • Deny Nughoro Triwibowo Universitas Harapan Bangsa
  • Bala Putra Dewa Universitas Harapan Bangsa
  • R Bagus Bambang Sumantri Universitas Harapan Bangsa
  • Riska Suryani Universitas Harapan Bangsa

DOI:

https://doi.org/10.59247/jahir.v1i1.20

Keywords:

Image processing, Breast tumor, SVM, Canny Method, Edge Detection

Abstract

Breast tumor is one of the leading causes of death in women worldwide. The term tumor is often used for all lumps found in the human body. The increase in the number of cases of breast tumors that occur each year is due to the absence of prevention or early detection. The research was carried out by utilizing the development of information technology to create a breast tumor detection system with digital image processing. The application system will process mammogram images to detect edges with the canny method and will be classified using the SVM method. The data used is 176 data obtained from the Kaggle dataset. The test results revealed that 64 patients were classified as having malignant breast tumors (M), and 113 did not have breast tumors (B), with a classification accuracy rate of 95%. From the results obtained, the application system is very good for the early identification of breast tumors.

References

G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, and K. . Sharma, "Various Types and Management of Breast Cancer : An Review," J. Adv. Pharm. Technol. Res., vol. 1, no. 2, pp. 109–126, 2010, doi: 10.1016/S1474-4422(10)70128-9.

T. Riley, "Benign Breast Disease," Physician Assist. Clin., vol. 3, no. 3, pp. 363–371, 2018, doi: 10.1016/j.cpha.2018.02.005.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, "Global cancer statistics," CA. Cancer J. Clin., vol. 65, no. 2, pp. 87–108, 2015, doi: 10.3322/caac.21262.

W. H. Organization, "Cancer Today: Data and Methods," Global Cancer Observatory (GCO), 2018. http://gco.iarc.fr/ (accessed Jan. 10, 2023).

C. M. Annur, “Kanker Payudara, Penyakit Kanker Paling Banyak Dialami Masyarakat Indonesia,” Katadata Media Network, 2022. https://databoks.katadata.co.id/datapublish/2022/10/11/kanker-payudara-penyakit-kanker-paling-banyak-dialami-masyarakat-indonesia (accessed Jan. 10, 2023).

H. Widowati, “Kasus Kanker Payudara Paling Banyak Terjadi di Indonesia,” Katadata Media Network, 2019. https://databoks.katadata.co.id/datapublish/2019/06/03/kasus-kanker-payudara-paling-banyak-terjadi-di-indonesia (accessed Jan. 10, 2023).

K. K. R. Indonesia, “Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan,” Kementrian Kesehatan Republik Indonesia, 2022. https://www.kemkes.go.id/article/view/22020400002/kanker-payudara-paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan.html (accessed Jan. 13, 2023).

R. F. Ahsani and P. B. Machmud, “Hubungan Riwayat Reproduksi dengan Tumor Payudara pada Perempuan Usia Muda di Indonesia (Analisis Riset PTM 2016),” Media Kesehat. Masy. Indones., vol. 15, no. 3, p. 237, 2019, doi: 10.30597/mkmi.v15i3.6278.

E. Irawan, L. Rahayuwati, and D. I. Yani, “Hubungan Penggunaan Terapi Modern dan Komplementer terhadap Kualitas Hidup Pasien Kanker Payudara,” J. Keperawatan Padjadjaran, vol. 5, no. 1, pp. 19–28, 2017, doi: 10.24198/jkp.v5n1.3.

A. C. Sari, “Pengaruh Pendidikan Kesehatan Tentang Pemeriksaan Payudara Sendiri Terhadap Pengetahuan Dan Motivasi Melakukannya Pada Wanita Usia 30-50 Tahun Di Desa Joho Mojolaban,” Universitas Muhammadiyah Surakarta, 2016.

Q. Fauziah and A. R. Mulyana, “Perancangan Aplikasi Kesehatan Payudara Sebagai Media Informasi dan Edukasi,” FAD, pp. 1–14, 2022.

R. Nanda, S. W. Dari, and A. Ihsan, “Segmentasi Citra Medis untuk Deteksi Objek FAM pada Payudara Menggunakan Metode Sobel,” J. Media Inform. Budidarma, vol. 3, no. 4, p. 248, 2019, doi: 10.30865/mib.v3i4.1232.

A. Maulida, N. Nurhidayah, Y. Fendriani, and H. Haryono, “Segmentasi Citra Mammogram Untuk Deteksi Dini Kanker Payudara Dengan Menggunakan Metode Otsu Thresholding,” J. Fis. Unand, vol. 11, no. 2, pp. 180–186, 2022, doi: 10.25077/jfu.11.2.180-186.2022.

N. B. Tsani and H. Harliana, “Implementasi Deteksi Tepi Canny Dengan Transformasi Powerlaw Dalam Mendeteksi Stadium Kanker Serviks,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 1, no. 01, pp. 22–33, 2019, doi: 10.46772/intech.v1i01.35.

U. L. Lubis, “Pengetahuan Remaja Putri Tentang Pemeriksaan Payudara Sendiri (SADARI) dengan Perilaku Sadari,” J. Aisyah J. Ilmu Kesehat., vol. 2, no. 1, pp. 81–86, 2017, doi: 10.30604/jika.v2i1.36.

C. W. Dawson, Projects in Computing and Information Systems, vol. 2. 2009. [Online]. Available: http://www.sentimentaltoday.net/National_Academy_Press/0321263553.Addison.Wesley.Publishing.Company.Projects.in.Computing.and.Information.Systems.A.Students.Guide.Jun.2005.pdf

N. U. Maharani, “Gambaran Penderita Tumor Payudara Berdasarkan Usia Biologis,” J. Med. Hutama, vol. 03, no. 02, pp. 1851–1854, 2022.

M. I. Rosadi, A. Z. Arifin, and A. Yuniarti, “Klasifikasi Massa Pada Citra Mammogram Menggunakan Kombinasi Seleksi Fitur F-Score Dan Ls-Svm,” Teknol. J. Ilm. Sist. Inf., vol. 6, no. 1, p. 27, 2016, doi: 10.26594/teknologi.v6i1.558.

Downloads

Published

2023-02-18

How to Cite

Triwibowo, D. N., Dewa, B. P., Sumantri, R. B. B., & Suryani, R. (2023). Identification of Breast Tumors With Image Processing Using Canny Edge Detection. Journal of Advanced Health Informatics Research, 1(1), 28–34. https://doi.org/10.59247/jahir.v1i1.20

Issue

Section

Articles