Potential Use of U-Net and Fuzzy Logic in Diabetic Foot Ulcer Segmentation: A Comprehensive Review

Authors

  • Rachman Hidayat Universitas Harapan Bangsa
  • Annastasya Nabila Elsa Wulandari Universitas Harapan Bangsa
  • Purwono Purwono Universitas Harapan Bangsa
  • Khoirun Nisa Universitas Harapan Bangsa

DOI:

https://doi.org/10.59247/jahir.v2i3.299

Keywords:

Diabetic Foot Ulcer, U-Net, Fuzzy, Medical, Image Segmentation

Abstract

Diabetic foot ulcer (DFU) image segmentation is still an interesting concern of researchers. Various new deep learning-based methods have been proposed to handle this image segmentation problem. Some research problems that are still faced by many researchers are dataset problems that are considered limited and need further clinical trials. The challenges of data problems include heterogeneity and image quality variations in the shape of skin lesions and subjectivity when annotating. The evaluation results from previous studies also show a considerable difference where there are still low accuracy results, but also too high accuracy is still found so that it is considered to have the potential for overfitting. As a result of the review of various related studies, there is an interesting potential of applying fuzzy logic to the U-Net architecture. This architecture has become very popular because it is widely used in medical image segmentation. The application of fuzzy logic can be applied to the U-Net architecture such as encoder, decoder, skip connection to adjust various U-Net parameters.

References

X. Wang et al., “The awareness and determinants of diabetic foot ulcer prevention among diabetic patients: Insights from NHANES (2011–2018),” Prev Med Rep, vol. 36, p. 102433, 2023, doi: https://doi.org/10.1016/j.pmedr.2023.102433.

A. V. A. Mariadoss, A. S. Sivakumar, C.-H. Lee, and S. J. Kim, “Diabetes mellitus and diabetic foot ulcer: Etiology, biochemical and molecular based treatment strategies via gene and nanotherapy,” Biomedicine & Pharmacotherapy, vol. 151, p. 113134, 2022, doi: https://doi.org/10.1016/j.biopha.2022.113134.

G. Balasubramanian, P. Vas, N. Chockalingam, and R. Naemi, “A synoptic overview of neurovascular interactions in the foot,” Front Endocrinol (Lausanne), vol. 11, p. 308, 2020.

G. Han and R. Ceilley, “Chronic wound healing: a review of current management and treatments,” Adv Ther, vol. 34, pp. 599–610, 2017.

D. Othman, “Negative pressure wound therapy literature review of efficacy, cost effectiveness, and impact on patients’ quality of life in chronic wound management and its implementation in the United kingdom,” Plast Surg Int, vol. 2012, 2012.

H. Khalil, M. Cullen, H. Chambers, N. Steers, and J. Walker, “Implementation of a successful electronic wound documentation system in rural Victoria, Australia: a subject of collaboration and community engagement,” Int Wound J, vol. 11, no. 3, pp. 314–318, 2014.

J. Zhang, C. Mihai, L. Tüshaus, G. Scebba, O. Distler, and W. Karlen, “Wound image quality from a mobile health tool for home-based chronic wound management with real-time quality feedback: Randomized feasibility study,” JMIR Mhealth Uhealth, vol. 9, no. 7, p. e26149, 2021.

P. Sheehan, P. Jones, A. Caselli, J. M. Giurini, and A. Veves, “Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial,” Diabetes Care, vol. 26, no. 6, pp. 1879–1882, 2003.

X. Li et al., “HAL-IA: A Hybrid Active Learning framework using Interactive Annotation for medical image segmentation,” Med Image Anal, vol. 88, p. 102862, 2023, doi: https://doi.org/10.1016/j.media.2023.102862.

Y. Tang, S. Wang, Y. Qu, Z. Cui, and W. Zhang, “Consistency and adversarial semi-supervised learning for medical image segmentation,” Comput Biol Med, vol. 161, p. 107018, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.107018.

H. Zhang et al., “BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation,” Comput Biol Med, vol. 159, p. 106960, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.106960.

J. Cheng et al., “DDU-Net: A dual dense U-structure network for medical image segmentation,” Appl Soft Comput, vol. 126, p. 109297, 2022, doi: https://doi.org/10.1016/j.asoc.2022.109297.

Z. Wang, J. Zhu, S. Fu, S. Mao, and Y. Ye, “RFPNet: Reorganizing feature pyramid networks for medical image segmentation,” Comput Biol Med, vol. 163, p. 107108, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.107108.

W. Baccouch, S. Oueslati, B. Solaiman, and S. Labidi, “A comparative study of CNN and U-Net performance for automatic segmentation of medical images: application to cardiac MRI,” Procedia Comput Sci, vol. 219, pp. 1089–1096, 2023, doi: https://doi.org/10.1016/j.procs.2023.01.388.

G. Chen, L. Li, J. Zhang, and Y. Dai, “Rethinking the unpretentious U-net for medical ultrasound image segmentation,” Pattern Recognit, vol. 142, p. 109728, 2023, doi: https://doi.org/10.1016/j.patcog.2023.109728.

R. Gamal, H. Barka, and M. Hadhoud, “GAU U-Net for multiple sclerosis segmentation,” Alexandria Engineering Journal, vol. 73, pp. 625–634, 2023, doi: https://doi.org/10.1016/j.aej.2023.04.069.

M. Goyal, N. D. Reeves, S. Rajbhandari, and M. H. Yap, “Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices,” IEEE J Biomed Health Inform, vol. 23, no. 4, pp. 1730–1741, 2019, doi: 10.1109/JBHI.2018.2868656.

N. Rania, H. Douzi, L. Yves, and T. Sylvie, Semantic segmentation of diabetic foot ulcer images: Dealing with small dataset in dl approaches, vol. 12119 LNCS. Springer International Publishing, 2020. doi: 10.1007/978-3-030-51935-3_17.

G. Scebba et al., “Detect-and-segment: A deep learning approach to automate wound image segmentation,” Inform Med Unlocked, vol. 29, no. November 2021, p. 100884, 2022, doi: 10.1016/j.imu.2022.100884.

A. Heras-Tang, D. Valdes-Santiago, A. Leon-Mecias, M. L. B. Diaz-Romañach, and J. A. Mesejo-Chiong, “Diabetic foot ulcer segmentation using logistic regression, DBSCAN clustering and morphological operators,” Electronic Letters on Computer Vision and Image Analysis, vol. 21, no. 2, pp. 23–39, 2022, doi: 10.5565/REV/ELCVIA.1413.

M. Hu, Y. Zhong, S. Xie, H. Lv, and Z. Lv, “Fuzzy System Based Medical Image Processing for Brain Disease Prediction ,” 2021.

M. Cui, K. Li, J. Chen, and W. Yu, “CM-Unet: A Novel Remote Sensing Image Segmentation Method Based on Improved U-Net,” IEEE Access, vol. 11, pp. 56994–57005, 2023, doi: 10.1109/ACCESS.2023.3282778.

B. Li, T. Yang, and X. Zhao, “NVTrans-UNet: Neighborhood vision transformer based U-Net for multi-modal cardiac MR image segmentation.,” J Appl Clin Med Phys, vol. 24, no. 3, p. e13908, Mar. 2023, doi: 10.1002/acm2.13908.

R. Sharma, T. Goel, M. Tanveer, S. Dwivedi, and R. Murugan, “FAF-DRVFL: Fuzzy activation function based deep random vector functional links network for early diagnosis of Alzheimer disease,” Appl Soft Comput, vol. 106, p. 107371, 2021, doi: https://doi.org/10.1016/j.asoc.2021.107371.

M. Kirichev, T. Slavov, and G. Momcheva, “Fuzzy U-Net Neural Network Design for Image Segmentation BT - Contemporary Methods in Bioinformatics and Biomedicine and Their Applications,” S. S. Sotirov, T. Pencheva, J. Kacprzyk, K. T. Atanassov, E. Sotirova, and G. Staneva, Eds., Cham: Springer International Publishing, 2022, pp. 177–184.

P. Shah et al., “Wagner’s Classification as a Tool for Treating Diabetic Foot Ulcers: Our Observations at a Suburban Teaching Hospital.,” Cureus, vol. 14, no. 1, p. e21501, Jan. 2022, doi: 10.7759/cureus.21501.

M. Jalilian and S. Shiri, “The reliability of the Wagner Scale for evaluation the diabetic wounds: A literature review,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 16, no. 1, p. 102369, 2022, doi: https://doi.org/10.1016/j.dsx.2021.102369.

W. D. J. McComb, “Wagner Grading of Diabetic Foot Ulcers and National Pressure Injury Advisory Panel Staging of Pressure Injuries: A Comparison for Clinical Use,” Adv Skin Wound Care, vol. 36, no. 5, 2023.

A. M. Settembrini and F. Settembrini, “Chapter 28 - Wound care: how to approach venous, arterial and diabetic ulcers,” P. Settembrini and A. M. B. T.-V. S. Settembrini, Eds., Academic Press, 2022, pp. 325–335. doi: https://doi.org/10.1016/B978-0-12-822113-6.00010-3.

C. Wang et al., “Fully automatic wound segmentation with deep convolutional neural networks,” Sci Rep, vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-78799-w.

A. Wagh et al., “Semantic Segmentation of Smartphone Wound Images: Comparative Analysis of AHRF and CNN-Based Approaches.,” IEEE Access, vol. 8, pp. 181590–181604, 2020, doi: 10.1109/access.2020.3014175.

M. Ahsan, S. Naz, R. Ahmad, H. Ehsan, and A. Sikandar, “A Deep Learning Approach for Diabetic Foot Ulcer Classification and Recognition,” Information (Switzerland), vol. 14, no. 1, pp. 1–10, 2023, doi: 10.3390/info14010036.

G. Scebba et al., “Detect-and-segment: A deep learning approach to automate wound image segmentation,” Inform Med Unlocked, vol. 29, p. 100884, 2022, doi: https://doi.org/10.1016/j.imu.2022.100884.

R. Niri, D. Hassan, Y. Lucas, and S. Treuillet, “A Superpixel-Wise Fully Convolutional Neural Network Approach for Diabetic Foot Ulcer Tissue Classification,” 2021, pp. 308–320. doi: 10.1007/978-3-030-68763-2_23.

X. Zhao et al., “Fine-Grained Diabetic Wound Depth and Granulation Tissue Amount Assessment Using Bilinear Convolutional Neural Network,” IEEE Access, vol. 7, pp. 179151–179162, 2019, doi: 10.1109/ACCESS.2019.2959027.

H. N. Huang et al., “Image segmentation using transfer learning and Fast R-CNN for diabetic foot wound treatments,” Front Public Health, vol. 10, no. 1, 2022, doi: 10.3389/fpubh.2022.969846.

C. Wang et al., “Fully automatic wound segmentation with deep convolutional neural networks,” Sci Rep, vol. 10, no. 1, p. 21897, 2020, doi: 10.1038/s41598-020-78799-w.

J. P., S. K. B. K., and S. Jayaraman, “Automatic foot ulcer segmentation using conditional generative adversarial network (AFSegGAN): A wound management system,” PLOS Digital Health, vol. 2, no. 11, p. e0000344, Nov. 2023.

M. Goyal, M. H. Yap, N. D. Reeves, S. Rajbhandari, and J. Spragg, “Fully convolutional networks for diabetic foot ulcer segmentation,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 618–623. doi: 10.1109/SMC.2017.8122675.

P. N. Thotad, G. R. Bharamagoudar, and B. S. Anami, “Diabetic foot ulcer detection using deep learning approaches,” Sensors International, vol. 4, p. 100210, 2023, doi: https://doi.org/10.1016/j.sintl.2022.100210.

S. K. Das et al., “Diabetic Foot Ulcer Identification: A Review.,” Diagnostics (Basel), vol. 13, no. 12, Jun. 2023, doi: 10.3390/diagnostics13121998.

M. H. Yap et al., “Deep learning in diabetic foot ulcers detection: A comprehensive evaluation,” Comput Biol Med, vol. 135, p. 104596, 2021, doi: https://doi.org/10.1016/j.compbiomed.2021.104596.

D. Yuan, Y. Liu, Z. Xu, Y. Zhan, J. Chen, and T. Lukasiewicz, “Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing,” Comput Biol Med, vol. 153, p. 106487, 2023, doi: https://doi.org/10.1016/j.compbiomed.2022.106487.

A. Davradou, E. Protopapadakis, M. Kaselimi, A. Doulamis, and N. Doulamis, “Diabetic Foot Ulcers Monitoring by Employing Super Resolution and Noise Reduction Deep Learning Techniques,” in Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, in PETRA ’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 83–88. doi: 10.1145/3529190.3529214.

Z. Mao et al., “Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans,” Biomed Opt Express, vol. 10, no. 11, pp. 5832–5851, 2019, doi: 10.1364/BOE.10.005832.

N. Uzakkyzy et al., “Image noise reduction by deep learning methods,” International Journal of Electrical and Computer Engineering, vol. 13, no. 6, pp. 6855–6861, 2023, doi: 10.11591/ijece.v13i6.pp6855-6861.

B. Cassidy et al., “Artificial intelligence for automated detection of diabetic foot ulcers: A real-world proof-of-concept clinical evaluation,” Diabetes Res Clin Pract, vol. 205, p. 110951, 2023, doi: https://doi.org/10.1016/j.diabres.2023.110951.

J. Huang, G. Liu, and B. Wang, “Semantic Segmentation under a Complex Background for Machine Vision Detection Based on Modified UPerNet with Component Analysis Modules,” Math Probl Eng, vol. 2020, p. 6903130, 2020, doi: 10.1155/2020/6903130.

L. Alzubaidi et al., “Towards a Better Understanding of Transfer Learning for Medical Imaging: A Case Study,” Applied Sciences, vol. 10, p. 4523, Jun. 2020, doi: 10.3390/app10134523.

S. Wang et al., “Annotation-efficient deep learning for automatic medical image segmentation,” Nat Commun, vol. 12, no. 1, p. 5915, 2021, doi: 10.1038/s41467-021-26216-9.

S. Muralidhara, A. Lucieri, A. Dengel, and S. Ahmed, “Holistic multi-class classification & grading of diabetic foot ulcerations from plantar thermal images using deep learning.,” Health Inf Sci Syst, vol. 10, no. 1, p. 21, Dec. 2022, doi: 10.1007/s13755-022-00194-8.

M. Goyal, N. D. Reeves, S. Rajbhandari, N. Ahmad, C. Wang, and M. H. Yap, “Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques,” Comput Biol Med, vol. 117, p. 103616, 2020, doi: https://doi.org/10.1016/j.compbiomed.2020.103616.

B. Preim and C. Botha, “Chapter 2 - Acquisition of Medical Image Data,” in Visual Computing for Medicine (Second Edition), B. Preim and C. B. T.-V. C. for M. (Second E. Botha, Eds., Boston: Morgan Kaufmann, 2014, pp. 15–67. doi: https://doi.org/10.1016/B978-0-12-415873-3.00002-X.

D. Wade, “Ethics of collecting and using healthcare data.,” Jun. 2007, England. doi: 10.1136/bmj.39247.679329.80.

S. T. Padmapriya and S. Parthasarathy, “Ethical Data Collection for Medical Image Analysis: a Structured Approach,” Asian Bioeth Rev, 2023, doi: 10.1007/s41649-023-00250-9.

V. Totten, E. L. Simon, M. Jalili, and H. R. Sawe, “Acquiring data in medical research: A research primer for low- and middle-income countries,” African Journal of Emergency Medicine, vol. 10, pp. S135–S139, 2020, doi: https://doi.org/10.1016/j.afjem.2020.09.009.

A. Rebinth and M. Kumar S, “Importance of Manual Image Annotation Tools and Free Datasets for Medical Research,” Journal of Advanced Research in Dynamical and Control Systems, vol. 10, pp. 1880–1885, Jan. 2019.

D. Filko and E. K. Nyarko, “2D/3D Wound Segmentation and Measurement Based on a Robot-Driven Reconstruction System,” 2023. doi: 10.3390/s23063298.

Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning,” J Anal Test, vol. 2, Oct. 2018, doi: 10.1007/s41664-018-0068-2.

J. Nalepa, M. Marcinkiewicz, and M. Kawulok, “Data Augmentation for Brain-Tumor Segmentation: A Review ,” 2019.

N. Rania, H. Douzi, L. Yves, and T. Sylvie, “Semantic Segmentation of Diabetic Foot Ulcer Images: Dealing with Small Dataset in DL Approaches,” in Image and Signal Processing, A. El Moataz, D. Mammass, A. Mansouri, and F. Nouboud, Eds., Cham: Springer International Publishing, 2020, pp. 162–169.

A. Semma, S. Lazrak, Y. Hannad, M. Boukhani, and Y. El Kettani, “WRITER IDENTIFICATION: The EFFECT of IMAGE RESIZING on CNN PERFORMANCE,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 46, no. 4/W5-2021, pp. 501–507, Dec. 2021, doi: 10.5194/isprs-Archives-XLVI-4-W5-2021-501-2021.

S. Saponara and A. Elhanashi, “Impact of Image Resizing on Deep Learning Detectors for Training Time and Model Performance BT - Applications in Electronics Pervading Industry, Environment and Society,” S. Saponara and A. De Gloria, Eds., Cham: Springer International Publishing, 2022, pp. 10–17.

A. Depeursinge, J. Fageot, and O. S. Al-Kadi, “Chapter 1 - Fundamentals of Texture Processing for Biomedical Image Analysis: A General Definition and Problem Formulation,” in The Elsevier and MICCAI Society Book Series, A. Depeursinge, O. S. Al-Kadi, and J. R. B. T.-B. T. A. Mitchell, Eds., Academic Press, 2017, pp. 1–27. doi: https://doi.org/10.1016/B978-0-12-812133-7.00001-6.

K. Tran, J. P. Bøtker, A. Aframian, and K. Memarzadeh, “Chapter 6 - Artificial intelligence for medical imaging,” A. Bohr and K. B. T.-A. I. in H. Memarzadeh, Eds., Academic Press, 2020, pp. 143–162. doi: https://doi.org/10.1016/B978-0-12-818438-7.00006-X.

J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” J Big Data, vol. 6, no. 1, p. 27, 2019, doi: 10.1186/s40537-019-0192-5.

K. Ghosh, C. Bellinger, R. Corizzo, P. Branco, B. Krawczyk, and N. Japkowicz, “The class imbalance problem in deep learning,” Mach Learn, 2022, doi: 10.1007/s10994-022-06268-8.

S. Rezvani and X. Wang, “A broad review on class imbalance learning techniques,” Appl Soft Comput, vol. 143, p. 110415, 2023, doi: 10.1016/j.asoc.2023.110415.

N. Siddique, P. Sidike, C. Elkin, and V. Devabhaktuni, “U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications,” IEEE Access, vol. PP, p. 1, Jun. 2021, doi: 10.1109/ACCESS.2021.3086020.

M. Khouy, Y. Jabrane, M. Ameur, and A. Hajjam El Hassani, “Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm,” 2023. doi: 10.3390/jpm13091298.

M. K. Anbudevi and K. Suganthi, “Review of Semantic Segmentation of Medical Images Using Modified Architectures of UNET,” Diagnostics, vol. 12, no. 3064, pp. 1–31, 2022, doi: https://doi.org/10.3390/diagnostics12123064.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,” N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., Cham: Springer International Publishing, 2015, pp. 234–241.

J. Kugelman et al., “A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation,” Sci Rep, vol. 12, no. 1, p. 14888, 2022, doi: 10.1038/s41598-022-18646-2.

A. Khanna, N. D. Londhe, S. Gupta, and A. Semwal, “A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images,” Biocybern Biomed Eng, vol. 40, no. 3, pp. 1314–1327, 2020, doi: https://doi.org/10.1016/j.bbe.2020.07.007.

G. Yu, J. Dong, Y. Wang, and X. Zhou, “RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation,” 2023. doi: 10.3390/s23010053.

Q. Xu, Z. Ma, N. HE, and W. Duan, “DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation,” Comput Biol Med, vol. 154, p. 106626, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.106626.

R. Yousef et al., “U-Net-Based Models towards Optimal MR Brain Image Segmentation,” 2023. doi: 10.3390/diagnostics13091624.

M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and V. K. Asari, “Recurrent residual U-Net for medical image segmentation.,” J Med Imaging (Bellingham), vol. 6, no. 1, p. 14006, Jan. 2019, doi: 10.1117/1.JMI.6.1.014006.

X. Liu, R. Yin, and J. Yin, “Attention V-Net: A Modified V-Net Architecture for Left Atrial Segmentation,” 2022. doi: 10.3390/app12083764.

A. Chaurasia and E. Culurciello, LinkNet: Exploiting encoder representations for efficient semantic segmentation. 2017. doi: 10.1109/VCIP.2017.8305148.

J.-X. Cai, T.-J. Mu, Y.-K. Lai, and S.-M. Hu, “LinkNet: 2D-3D linked multi-modal network for online semantic segmentation of RGB-D videos,” Comput Graph, vol. 98, pp. 37–47, 2021, doi: https://doi.org/10.1016/j.cag.2021.04.013.

D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, “DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation,” in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020, pp. 558–564. doi: 10.1109/CBMS49503.2020.00111.

Z. Liu, J. John, and E. Agu, “Diabetic Foot Ulcer Ischemia and Infection Classification Using EfficientNet Deep Learning Models,” IEEE Open J Eng Med Biol, vol. 3, pp. 189–201, 2022, doi: 10.1109/OJEMB.2022.3219725.

D. Kucharski, A. Kostuch, F. Noworolnik, A. Brodzicki, and J. Jaworek-Korjakowska, “DFU-Ens: End-to-End Diabetic Foot Ulcer Segmentation Framework with Vision Transformer Based Detection BT - Diabetic Foot Ulcers Grand Challenge,” M. H. Yap, C. Kendrick, and B. Cassidy, Eds., Cham: Springer International Publishing, 2023, pp. 101–112.

S. M. Shah, A. Rizwan, G. Atteia, and M. Alabdulhafith, “CADFU for Dermatologists: A Novel Chronic Wounds & Ulcers Diagnosis System with DHuNeT (Dual-Phase Hyperactive UNet) and YOLOv8 Algorithm,” 2023. doi: 10.3390/healthcare11212840.

K. Sanjar, O. Bekhzod, J. Kim, J. Kim, A. Paul, and J. Kim, “Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation,” 2020. doi: 10.3390/app10103658.

B. Chudasama, N. Ovaskainen, J. Tamminen, N. Nordbäck, J. Engström, and I. Aaltonen, “Automated mapping of bedrock-fracture traces from UAV-acquired images using U-Net convolutional neural networks,” Comput Geosci, vol. 182, p. 105463, 2024, doi: https://doi.org/10.1016/j.cageo.2023.105463.

J. Arnal and L. Súcar, “Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images,” 2022. doi: 10.3390/math10193652.

Y.-P. Wang et al., “Use of U-Net Convolutional Neural Networks for Automated Segmentation of Fecal Material for Objective Evaluation of Bowel Preparation Quality in Colonoscopy,” Diagnostics, vol. 12, p. 613, Mar. 2022, doi: 10.3390/diagnostics12030613.

H. Lu, Y. She, J. Tie, and S. Xu, “Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation ,” 2022.

T. Xiang et al., “Towards bi-directional skip connections in encoder-decoder architectures and beyond,” Med Image Anal, vol. 78, p. 102420, 2022, doi: https://doi.org/10.1016/j.media.2022.102420.

M. M. Hasan, M. M. Hossain, M. M. Rahman, A. K. M. Azad, S. A. Alyami, and M. A. Moni, “FP-CNN: Fuzzy pooling-based convolutional neural network for lung ultrasound image classification with explainable AI,” Comput Biol Med, vol. 165, p. 107407, 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.107407.

D. Kucharski, A. Kostuch, F. Noworolnik, A. Brodzicki, and J. Jaworek-Korjakowska, “DFU-Ens: End-to-End Diabetic Foot Ulcer Segmentation Framework With Vision Transformer Based Detection,” in Diabetic Foot Ulcers Grand Challenge: Third Challenge, DFUC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings, Berlin, Heidelberg: Springer-Verlag, 2023, pp. 101–112. doi: 10.1007/978-3-031-26354-5_9.

X. Chen, D. Li, P. Wang, and X. Yang, “A Deep Convolutional Neural Network with Fuzzy Rough Sets for FER,” IEEE Access, vol. 8, pp. 2772–2779, 2020, doi: 10.1109/ACCESS.2019.2960769.

C. Guan, S. Wang, and A. W. C. Liew, “Lip Image Segmentation Based on a Fuzzy Convolutional Neural Network,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 7, pp. 1242–1251, 2020, doi: 10.1109/TFUZZ.2019.2957708.

T.-D.-T. Phan, S.-H. Kim, H.-J. Yang, and G.-S. Lee, “Skin Lesion Segmentation by U-Net with Adaptive Skip Connection and Structural Awareness,” 2021. doi: 10.3390/app11104528.

T. Sharma, N. K. Verma, and S. Masood, “Mixed fuzzy pooling in convolutional neural networks for image classification,” Multimed Tools Appl, vol. 82, no. 6, pp. 8405–8421, 2023, doi: 10.1007/s11042-022-13553-0.

C. J. Lin and J. Y. Jhang, “Intelligent Traffic-Monitoring System Based on YOLO and Convolutional Fuzzy Neural Networks,” IEEE Access, vol. 10, pp. 14120–14133, 2022, doi: 10.1109/ACCESS.2022.3147866.

J. Yu et al., “Learning Generalized Intersection Over Union for Dense Pixelwise Prediction,” in Proceedings of the 38th International Conference on Machine Learning, M. Meila and T. Zhang, Eds., in Proceedings of Machine Learning Research, vol. 139. PMLR, 2021, pp. 12198–12207.

H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression. 2019.

R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and N. Harel, “Continuous Dice Coefficient: a Method for Evaluating Probabilistic Segmentations,” bioRxiv, p. 306977, Jan. 2018, doi: 10.1101/306977.

F. Shafait, D. Keysers, and T. Breuel, Pixel-Accurate Representation and Evaluation of Page Segmentation in Document Images, vol. 1. 2006. doi: 10.1109/ICPR.2006.934.

Downloads

Published

2025-01-04

How to Cite

Rachman Hidayat, Annastasya Nabila Elsa Wulandari, Purwono, P., & Khoirun Nisa. (2025). Potential Use of U-Net and Fuzzy Logic in Diabetic Foot Ulcer Segmentation: A Comprehensive Review . Journal of Advanced Health Informatics Research, 2(3), 146–167. https://doi.org/10.59247/jahir.v2i3.299

Issue

Section

Articles

Most read articles by the same author(s)